Home
Class 12
MATHS
int(1)/(x(2x-3)^(2))dx=...

`int(1)/(x(2x-3)^(2))dx=`

A

`(1)/(3(2x-3))+(1)/(9)log((2x-3)/(x))+c`

B

`(1)/(3(3-2x))-(1)/(9)log((2x-3)/(x))+c`

C

`(1)/(2x-3)-(1)/(9)log((2x-3)/(x))+c`

D

`logx-(2)/(2x-3)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

" "int(x+1)/((2x-3)^(2))dx

int(1)/(x^(2)-2x-3)dx=

int((1)/(x^(2))+3x^(2))dx

int(x-1)/(x^(2)-2x-3)dx

int(x+1)/(2x^((3)/(2)))dx is equal to

int(x+1)/(3+2x-x^2)dx

int(1/[(x-1)(2-x)]^(3/2))dx

int(x)/((1+x^(2))^(3/2))dx

int((x-1))/((x-1)^(2)(2x+3))dx

int(x^(2)+1)/((x^(2)-1)^(3))dx=