Home
Class 12
MATHS
int((1-cos x)^(2//7))/((1+cosx)^(9//7))d...

`int((1-cos x)^(2//7))/((1+cosx)^(9//7))dx=`

A

`(7)/(22)(tan^(11//7)x)+c`

B

`(7)/(11)tan^(11//7)((x)/(2))+c`

C

`(7)/(22)(1+cosx)^(11//7)+c`

D

`(7)/(11)(1-cosx)^(11//7)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{(1 - \cos x)^{\frac{2}{7}}}{(1 + \cos x)^{\frac{9}{7}}} \, dx, \] we will use the substitution involving the tangent half-angle formula. ### Step 1: Use the half-angle identities Recall the half-angle identities: \[ \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}. \] Let \( t = \tan\left(\frac{x}{2}\right) \). Then, we have: \[ 1 - \cos x = 1 - \frac{1 - t^2}{1 + t^2} = \frac{2t^2}{1 + t^2}, \] and \[ 1 + \cos x = 1 + \frac{1 - t^2}{1 + t^2} = \frac{2}{1 + t^2}. \] ### Step 2: Substitute into the integral Now substituting these into the integral gives: \[ \int \frac{\left(\frac{2t^2}{1 + t^2}\right)^{\frac{2}{7}}}{\left(\frac{2}{1 + t^2}\right)^{\frac{9}{7}}} \, dx. \] ### Step 3: Simplify the expression This simplifies to: \[ \int \frac{(2t^2)^{\frac{2}{7}}}{(1 + t^2)^{\frac{2}{7}}} \cdot \frac{(1 + t^2)^{\frac{9}{7}}}{2^{\frac{9}{7}}} \, dx. \] This can be further simplified to: \[ \int \frac{(2t^2)^{\frac{2}{7}}}{2^{\frac{9}{7}}} \cdot (1 + t^2)^{\frac{7}{7}} \, dx. \] ### Step 4: Change of variable for \(dx\) We know that: \[ dx = \frac{2}{1 + t^2} \, dt. \] Substituting this into the integral gives: \[ \int \frac{(2t^2)^{\frac{2}{7}}}{2^{\frac{9}{7}}} (1 + t^2) \cdot \frac{2}{1 + t^2} \, dt = \int \frac{(2t^2)^{\frac{2}{7}} \cdot 2}{2^{\frac{9}{7}}} \, dt. \] ### Step 5: Factor out constants This simplifies to: \[ \frac{2^{1 - \frac{9}{7}}}{1} \int t^{\frac{4}{7}} \, dt = 2^{-\frac{2}{7}} \int t^{\frac{4}{7}} \, dt. \] ### Step 6: Integrate Now, integrating \( t^{\frac{4}{7}} \): \[ \int t^{\frac{4}{7}} \, dt = \frac{t^{\frac{4}{7} + 1}}{\frac{4}{7} + 1} = \frac{t^{\frac{11}{7}}}{\frac{11}{7}} = \frac{7}{11} t^{\frac{11}{7}}. \] ### Step 7: Substitute back Now substituting back \( t = \tan\left(\frac{x}{2}\right) \): \[ \frac{2^{-\frac{2}{7}} \cdot 7}{11} \tan^{\frac{11}{7}}\left(\frac{x}{2}\right) + C. \] ### Final Answer Thus, the final answer is: \[ \frac{7}{11 \cdot 2^{\frac{2}{7}}} \tan^{\frac{11}{7}}\left(\frac{x}{2}\right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(x)/(1-cosx)dx=

int(1-cosx)cos^(2)x dx=

int(cos x)/(sin^(7)x)dx

int(x)/(1+cosx)dx

int cos^(7) x dx

int(cosx-cos^(2)x)dx=

int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C , then f(x) is equal to

int(1)/(9+cos x)dx