Home
Class 12
MATHS
inte^(x).[f(x)-f''(x)]dx=...

`inte^(x).[f(x)-f''(x)]dx=`

A

`2e^(x).f'(x)+c`

B

`e^(x).[f(x)-f'(x)]+c`

C

`e^(x).f''(x)+c`

D

`x.f''(x)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(sin x + cos x)dx =

Show that int e^(x)[f(x)+f'(x)]dx=e^(x).f(x)+c Hence, evaluate: int e^(x)((2+sin2x)/(1+cos2x))dx

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

Let int e^(x){f(x)-f'(x)}dx=varphi(x) .Then int e^(x)f(x)dx is varphi(x)=

Assertion (A) : int(e^(x))/(x) (1 + x log x) dx = e^(x) log x +c. Reason (R) : int e^(x) [f(x) + f'(x)] dx = e^(x) f(x) + c

Assertion (A) : int e^(x)[sin x - cos x] dx = e^(x) sin x + C Reason (R) : int e^(x)[f(x) + f'(x)] dx = e^(x)f(x) + c

Let f(x) be a continous function on R. If int_(0)^(1)[f(x)-f(2x)]dx=5 and int_(0)^(2)[f(x)-f(4x)]dx=10 then the value of int_(0)^(1)[f(x)-f(8x)]dx=

Evaluate: int e^(x)(f(x)+f'(x))dx=e^(x)f(x)+C

int[f(x)+x.f'(x)]dx=