Home
Class 12
MATHS
int(x^(2)+1)/(x(x^(2)-1))dx=...

`int(x^(2)+1)/(x(x^(2)-1))dx=`

A

`log((x^(2)-1)/(x))+c`

B

`-log((x^(2)-1)/(x))+c`

C

`log((x)/(x^(2)+1))+c`

D

`-log((x)/(x^(2)+1))+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(3x^(2)+1)/(x(x^(2)+1))dx

int(x^(2)+x+1)/(x^(2)-x+1)dx

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx

int(x^(2)+1)/(x^(4)+x^(2)+1)dx

int(x^(2)-1)/(x^(4)-x^(2)+1)dx

int(x^(2)+1)/(x^(4)-x^(2)+1)dx=

int(x^(2)+1)/(x^(4)-x^(2)+1)dx= . . .

int(x^(2)-1)/(x^(4)+x^(2)+1)dx=

Evaluate : "int((x^(2)-x+1))/((x^(2)+1))dx

int((x+1)^(2))/(x(x^(2)+1))dx is equal to: