Home
Class 12
MATHS
int(log(3x)dx)/(log(9x)x)=...

`int(log(3x)dx)/(log(9x)x)=`

A

`log(3x)-log(9x)+c`

B

`logx-log3.log(log9x)+c`

C

`log9-logx.log(log3x)+c`

D

`logx-log9.log(log3x)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(log(3x))/(x log(9x))dx= (a) log(3x)-log(9x)+c (b) log(x)-(log3)*log(log9x)+c (c) log9-(log x)*log(log3x)+c (d) log(x)+(log3)*log(log(9x))+c

int(log(log x))/(x)dx) is

int((2+log x)^(3))/(x)dx

int(ln^(3)x)/(x)dx

int log|x|dx

int log x*dx

int(log sqrt(x))/(3x)dx

int(log sqrt(x))/(3x)dx

int(dx)/(x log x)

Evaluate: int(log(log x)+(1)/((log x)^(2)))dx