Home
Class 12
MATHS
If intf(x)dx=2[f(x)]^(3)+c , then f(x) c...

If `intf(x)dx=2[f(x)]^(3)+c` , then `f(x)` can be

A

`(x)/(2)`

B

`x^(3)`

C

`(1)/(sqrtx)`

D

`sqrt((x)/(3))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

If intx.f(x)dx=(1)/(2)f(x)+c , then f(x)=

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

If intf(x)sec^(2)xdx=(1)/(2)[f(x)]^(2)+c, then : f(x) can be

If intf(x)cosxdx=1/2[f(x)]^(2)+c," then " f(pi/2) is

If intf(x)cosx dx=(1)/(2)=(1)/(2)[f(x)]^(2)+c, then f(x) can be

If intf(x)dx=f(x)+c," then " f(x)=

If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be

If intf(x)*cosxdx=1/2{f(x)}^2+c , then f(0)= (A) 1 (B) 0 (C) -1 (D) none of these