Home
Class 12
MATHS
int(1+x+sqrt(x+x^(2)))/(sqrtx+sqrt(1+x))...

`int(1+x+sqrt(x+x^(2)))/(sqrtx+sqrt(1+x))dx=`

A

`(1)/(2)sqrt(1+x)+c`

B

`(2)/(3)(1+x)^(3//2)+c`

C

`sqrt(1+x)+c`

D

`2(1+x)^(3//2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1 + x + \sqrt{x + x^2}}{\sqrt{x} + \sqrt{1 + x}} \, dx, \] we will simplify the integrand step by step. ### Step 1: Simplify the expression inside the integral We start by rewriting \(1 + x\) in a different form. We can express \(1 + x\) as \((\sqrt{1 + x})^2\). Thus, we have: \[ \sqrt{x + x^2} = \sqrt{x(1 + x)}. \] Now, substituting this back into the integral, we get: \[ \int \frac{(\sqrt{1 + x})^2 + \sqrt{x(1 + x)}}{\sqrt{x} + \sqrt{1 + x}} \, dx. \] ### Step 2: Factor out common terms Next, we can factor out \(\sqrt{x}\) from the numerator: \[ \sqrt{x}(\sqrt{1 + x} + 1). \] So the integral becomes: \[ \int \frac{\sqrt{x}(\sqrt{1 + x} + 1)}{\sqrt{x} + \sqrt{1 + x}} \, dx. \] ### Step 3: Cancel common terms Now, we can simplify the expression further. The numerator \(\sqrt{x}(\sqrt{1 + x} + 1)\) and the denominator \(\sqrt{x} + \sqrt{1 + x}\) share a common term. This allows us to cancel out the common terms: \[ \int \sqrt{1 + x} \, dx. \] ### Step 4: Integrate Now we need to integrate \(\sqrt{1 + x}\). We can use the power rule for integration: \[ \int (1 + x)^{1/2} \, dx = \frac{(1 + x)^{3/2}}{3/2} + C = \frac{2}{3}(1 + x)^{3/2} + C. \] ### Final Solution Thus, the final solution to the integral is: \[ \frac{2}{3}(1 + x)^{3/2} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(1+x+sqrt(x+x^(2)))/(sqrt(x)+sqrt(1+x))dx=

int(1+x+sqrt(x+x^(2)))/(sqrt(x)+sqrt(1+x))dx is equal to

int (1+x+sqrt(1+x^2))/(sqrtx+sqrt(1+x)) dx=

int_(0)^(1)(1+x+sqrt(x+x^(2)))/(sqrt(x)+sqrt(1+x))dx is

int(sqrt(x^(2)+1))/(x)dx

int(dx)/(sqrt(1-x-x^(2)))

int (2)/(sqrtx-sqrt(x+3)) dx =….

int (1)/(sqrtx+ sqrt(x^(3)))dx= ….

int_1^4(sqrt(5-x))/(sqrtx+sqrt(5-x))dx=

int(dx)/(sqrt(x)sqrt(1-x))