Home
Class 12
MATHS
If I(1)=intsin^(-1)xdx and I(2)sin^(-1)s...

If `I_(1)=intsin^(-1)xdx and I_(2)sin^(-1)sqrt(-x^(2))dx,` then

A

`I_(1)=I_(2)`

B

`I_(2):I_(1)=(pi)/(2)`

C

`I_(1)+I_(2)=(pi)/(2)`

D

`I_(1)+I_(2)=(pi)/(2)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and then analyze their relationship. ### Step-by-Step Solution: 1. **Define the Integrals**: \[ I_1 = \int \sin^{-1}(x) \, dx \] \[ I_2 = \int \sin^{-1}(\sqrt{1 - x^2}) \, dx \] 2. **Simplify \( I_2 \)**: We know that: \[ \sin^{-1}(\sqrt{1 - x^2}) = \cos^{-1}(x) \] Therefore, we can rewrite \( I_2 \) as: \[ I_2 = \int \cos^{-1}(x) \, dx \] 3. **Combine the Integrals**: Now we can express \( I_1 + I_2 \): \[ I_1 + I_2 = \int \sin^{-1}(x) \, dx + \int \cos^{-1}(x) \, dx \] This can be combined into a single integral: \[ I_1 + I_2 = \int \left( \sin^{-1}(x) + \cos^{-1}(x) \right) \, dx \] 4. **Use the Identity**: We know from trigonometric identities that: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] Therefore: \[ I_1 + I_2 = \int \frac{\pi}{2} \, dx \] 5. **Integrate**: Now we can integrate: \[ I_1 + I_2 = \frac{\pi}{2} \int dx = \frac{\pi}{2} x + C \] where \( C \) is the constant of integration. 6. **Conclusion**: Thus, we have: \[ I_1 + I_2 = \frac{\pi}{2} x + C \] ### Final Result: The relationship between \( I_1 \) and \( I_2 \) is: \[ I_1 + I_2 = \frac{\pi}{2} x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

I=int sqrt(1-x^(2))dx

I=int sin^(-1)(2x)dx

(i)int(1)/(sqrt(x+2))dx

intsin^-1sqrt(x/(a+x))dx

(i) int(x-1)/(sqrt(x^(2)+1))dx

I=int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

If intsin^(-1)xdx=x sin^(-1)x+u+c, then u=

If I_(1)=int_(1-x)^(k) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(k) sin{x(1-x)}dx , then

If I_(1)=int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx , then