Home
Class 12
MATHS
Show that : int0^1(logx)/((1+x))dx=-int0...

Show that : `int_0^1(logx)/((1+x))dx=-int_0^1(log(1+x))/x dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that :int_(0)^(1)(log x)/((1+x))dx=-int_(0)^(1)(log(1+x))/(x)dx

int_0^1 log((x)/(1-x))dx=0

Show that int_(0)^(1)log((1-x)/(x))dx=0

int_0^1log(1+x)/(1+x^2)dx

Prove that int_0^1log(x/(1-x))dx=int_0^1log((1-x)/x)dx . Find the value of int_0^1log(x/(1-x))dx

int_(0)^(1)(log(1+x))/(1+x)dx

Show that int_0^1(log(1+x))/(1+x^2)dx=pi/8log2

int_(0)^(1)(log x)dx

Prove that int_(0)^(1)log((x)/(x-1))dx=int_(0)^(1)log((x-1)/(x))dx . Find the value of int_(0)^(1)log((x)/(x-1))dx

int_(0)^(1)log((1-x)/(x))dx=0