Home
Class 12
MATHS
int(sin2x)/(sin5x.sin3x)dx=...

`int(sin2x)/(sin5x.sin3x)dx=`

A

`log(sin3x)-log(sin5x)+c`

B

`(1)/(3).log(sin3x)+(1)/(5).log(sin5x)+c`

C

`(1)/(3).log(sin3x)-(1)/(5).log(sin5x)+c`

D

`3.log(sin3x)-5.log(sin5x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin 2x}{\sin 5x \sin 3x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the given integral: \[ I = \int \frac{\sin 2x}{\sin 5x \sin 3x} \, dx \] ### Step 2: Use the Sine Angle Difference Identity We can express \(\sin 2x\) using the sine angle difference identity: \[ \sin 2x = \sin(5x - 3x) = \sin 5x \cos 3x - \cos 5x \sin 3x \] Thus, we can rewrite the integral as: \[ I = \int \frac{\sin 5x \cos 3x - \cos 5x \sin 3x}{\sin 5x \sin 3x} \, dx \] ### Step 3: Split the Integral We can split the integral into two parts: \[ I = \int \frac{\sin 5x \cos 3x}{\sin 5x \sin 3x} \, dx - \int \frac{\cos 5x \sin 3x}{\sin 5x \sin 3x} \, dx \] This simplifies to: \[ I = \int \cot 3x \, dx - \int \cot 5x \, dx \] ### Step 4: Integrate Each Term Now we integrate each term separately: 1. For \( \int \cot 3x \, dx \): \[ \int \cot 3x \, dx = \frac{1}{3} \ln |\sin 3x| + C_1 \] 2. For \( \int \cot 5x \, dx \): \[ \int \cot 5x \, dx = \frac{1}{5} \ln |\sin 5x| + C_2 \] ### Step 5: Combine the Results Combining the results from the two integrals, we have: \[ I = \frac{1}{3} \ln |\sin 3x| - \frac{1}{5} \ln |\sin 5x| + C \] where \( C = C_1 - C_2 \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sin 2x}{\sin 5x \sin 3x} \, dx = \frac{1}{3} \ln |\sin 3x| - \frac{1}{5} \ln |\sin 5x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

If int(sin2x)/(sin5xsin3x)dx 1=1/3logabs(sin3x)-1/5logabs(f(x))+c, " then " f(x) =_______.

int(sin2x)/(sin4x)dx

int(1-sin2x)/(cos x-sin x)dx=

int(1+sin2x)/(cos x+sin x)dx

int(sin2x sin3x sin4x)dx

int (sin x) / (sin3x) dx =

int(sin2x)/(1+sin^(2)x)dx=

int(sin2x )/(1+sin^(2)x)dx

int(sin2x+sin5x-sin3x)/(cos x+1-2sin^(2)2x)dx

int sin x .sin2x.sin3x dx