Home
Class 12
MATHS
If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))d...

If : `int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+2))^(a).((x+1)/(x-1))^(b)]+c` then : `(a, b)-=`

A

`((11)/(12), (5)/(6))`

B

`((11)/(12),-(5)/(6))`

C

`(-(11)/(12),(5)/(6))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{2x^2 + 3}{(x^2 - 1)(x^2 - 4)} \, dx \] we will use the method of partial fractions. Let's break down the solution step by step. ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{2x^2 + 3}{(x^2 - 1)(x^2 - 4)} \, dx \] ### Step 2: Substitute \( t = x^2 \) To simplify the expression, we can substitute \( t = x^2 \). This gives us: \[ \int \frac{2t + 3}{(t - 1)(t - 4)} \cdot \frac{1}{2\sqrt{t}} \, dt \] However, for the sake of partial fraction decomposition, we will keep it as: \[ \int \frac{2t + 3}{(t - 1)(t - 4)} \, dt \] ### Step 3: Partial Fraction Decomposition We express the integrand as: \[ \frac{2t + 3}{(t - 1)(t - 4)} = \frac{A}{t - 1} + \frac{B}{t - 4} \] Multiplying through by the denominator \((t - 1)(t - 4)\) gives: \[ 2t + 3 = A(t - 4) + B(t - 1) \] ### Step 4: Solve for A and B Expanding the right side: \[ 2t + 3 = At - 4A + Bt - B \] Combining like terms: \[ 2t + 3 = (A + B)t + (-4A - B) \] Setting coefficients equal gives us the system: 1. \( A + B = 2 \) 2. \( -4A - B = 3 \) From the first equation, we can express \( B \) in terms of \( A \): \[ B = 2 - A \] Substituting into the second equation: \[ -4A - (2 - A) = 3 \] This simplifies to: \[ -4A - 2 + A = 3 \implies -3A = 5 \implies A = -\frac{5}{3} \] Substituting back to find \( B \): \[ B = 2 - \left(-\frac{5}{3}\right) = 2 + \frac{5}{3} = \frac{6}{3} + \frac{5}{3} = \frac{11}{3} \] ### Step 5: Rewrite the Integral Now we can rewrite the integral: \[ \int \left( \frac{-5/3}{t - 1} + \frac{11/3}{t - 4} \right) dt \] ### Step 6: Integrate Integrating term by term: \[ = -\frac{5}{3} \ln |t - 1| + \frac{11}{3} \ln |t - 4| + C \] Substituting back \( t = x^2 \): \[ = -\frac{5}{3} \ln |x^2 - 1| + \frac{11}{3} \ln |x^2 - 4| + C \] ### Step 7: Combine Logarithms Using properties of logarithms: \[ = \ln \left( \frac{(x^2 - 4)^{11/3}}{(x^2 - 1)^{5/3}} \right) + C \] ### Step 8: Final Form Thus, we have: \[ \int \frac{2x^2 + 3}{(x^2 - 1)(x^2 - 4)} \, dx = \ln \left( \left( \frac{x^2 - 4}{x^2 - 1} \right)^{\frac{11}{3}} \right) + C \] ### Step 9: Identify a and b From the given equation: \[ \ln \left( \left( \frac{x - 2}{x + 2} \right)^{a} \cdot \left( \frac{x + 1}{x - 1} \right)^{b} \right) + C \] We can identify: - \( a = \frac{11}{3} \) - \( b = -\frac{5}{3} \) Thus, the final answer for \( (a, b) \) is: \[ (a, b) = \left( \frac{11}{3}, -\frac{5}{3} \right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(x ln x)/((x^(2)-1)^((3)/(2)))dx

(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C

If int(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C then

int(1)/(x^(2)-a^(2))dx=(1)/(2)a log(x-(a)/(x)+a)+c

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =

int_((1)/(2))^(2)(ln x)/(1+x^(2))dx

int(x^(2))/((x^(2)-4)^(3/2))dx=log|x+sqrt(x^(2)-4)|+A+c then A=

int(x^(2))/((x^(2)-4)^(3/2))dx=log|x+sqrt(x^(2)-4)|+A+c then A=