Home
Class 12
MATHS
int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3)...

`int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx=`

A

`(x^(2)+2x)/((x^(5)+x^(3)+1)^(2))+c`

B

`(x^(10))/(2(x^(5)+x^()+1)^(2))+c`

C

`ln|x^(5)+x^(3)+1|+sqrt(2x^(7)+5x^(4))+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{2x^{12} + 5x^{9}}{(x^{5} + x^{3} + 1)^{3}} \, dx, \] we can follow these steps: ### Step 1: Simplify the Denominator We start by factoring out \(x^5\) from the denominator: \[ x^{5} + x^{3} + 1 = x^{5}\left(1 + \frac{1}{x^{2}} + \frac{1}{x^{5}}\right). \] Thus, we rewrite the integral as: \[ \int \frac{2x^{12} + 5x^{9}}{\left(x^{5}\left(1 + \frac{1}{x^{2}} + \frac{1}{x^{5}}\right)\right)^{3}} \, dx. \] ### Step 2: Rewrite the Integral Taking \(x^5\) out of the cube in the denominator gives us: \[ = \int \frac{2x^{12} + 5x^{9}}{x^{15}\left(1 + \frac{1}{x^{2}} + \frac{1}{x^{5}}\right)^{3}} \, dx. \] ### Step 3: Divide Each Term Now we divide each term in the numerator by \(x^{15}\): \[ = \int \left( \frac{2}{x^{3}} + \frac{5}{x^{6}} \right) \cdot \frac{1}{\left(1 + \frac{1}{x^{2}} + \frac{1}{x^{5}}\right)^{3}} \, dx. \] ### Step 4: Substitution Let \[ t = 1 + \frac{1}{x^{2}} + \frac{1}{x^{5}}. \] Now we need to find \(dt\): \[ dt = \left(-\frac{2}{x^{3}} - \frac{5}{x^{6}}\right)dx. \] Thus, we can express \(dx\) in terms of \(dt\): \[ dx = -\frac{1}{\left(-\frac{2}{x^{3}} - \frac{5}{x^{6}}\right)} dt. \] ### Step 5: Substitute in the Integral Substituting \(t\) and \(dx\) into the integral gives: \[ = -\int \frac{1}{t^{3}} dt. \] ### Step 6: Integrate Now we integrate: \[ = -\left(-\frac{1}{2t^{2}}\right) + C = \frac{1}{2t^{2}} + C. \] ### Step 7: Substitute Back Substituting back for \(t\): \[ = \frac{1}{2\left(1 + \frac{1}{x^{2}} + \frac{1}{x^{5}}\right)^{2}} + C. \] ### Final Answer Thus, the final answer is: \[ \int \frac{2x^{12} + 5x^{9}}{(x^{5} + x^{3} + 1)^{3}} \, dx = \frac{1}{2\left(1 + \frac{1}{x^{2}} + \frac{1}{x^{5}}\right)^{2}} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int((2x^(12)+5x^(9))dx)/((x^(5)+x^(3)+1)^(3))

int (x^(3) +5x^(2) -4)/(x^(2)) dx

int(x^(3)+5x^(2)-3)/((x+2))dx

int((9x^(2)-4x+5))/((3x^(3)-2x^(2)+5x+1))dx

int(x^(3)+5)/((x-5)^(3)(x-1))dx

int((2x^(2)+5x+9)dx)/((x+1)sqrt(x^(2)+x+1))

int_(1)^(3)5x^(2)dx

int_(1)^(3)5x^(2)dx

int (x^3 + 5x^2 - 4)/(x^3) dx

int(x^(3)-4x^(2)+5x-1)/((x-1)^(2))dx