Home
Class 12
MATHS
If int(dx)/(root3(sin^(11)xcosx))=-[(3)/...

If `int(dx)/(root3(sin^(11)xcosx))=-[(3)/(8)f(x)+(3)/(2)g(x)]+C`, then

A

`f(x)=tan^(-8//3)x, g(x)=tan^(-2//3)x`

B

`f(x)=tan^(8//3)x, g(x)=tan^(-2//3)x`

C

`f(x)=tan^(-8//3)x, g(x)=tan^(2//3)x`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(sin^(3)xcosx))=?

Evaluate: int(dx)/(root(3)(sin^(11)x cos x))

int(1)/(root(3)(x^(2)))dx

"If " I=(dx)/(root(3)(sin^(11)xcosx))=-A(tanx)^(-(8)/(3))+B(tanx)^(-(2)/(3))+c," then the value of " 4A+B " is"-.

int(sin x)/(sin^(3)x+cos^(3)x)dx

If int(x^(4)+1)/(x^(6)+1)dx=tan^(-1)f(x)-(2)/(3)tan^(-1)g(x)+C, then both f(x) and g(x) are odd functions f(x) is monotonic function f(x)=g(x) has no real roots int(f(x))/(g(x))dx=-(1)/(x)+(3)/(x^(3))+c

int root(3)(x)dx

int root(3)(x^(2))dx