Home
Class 12
MATHS
int(e^(logx)+sinx).cos x dx=...

`int(e^(logx)+sinx).cos x dx=`

A

`x.cos x-sin x+4.cos 2x+c`

B

`x.sinx+cos x-(1)/(4).cos 2x+c`

C

`x.secx +tanx-(1)/(2).sin2x+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int (e^{\log x} + \sin x) \cos x \, dx \), we can follow these steps: ### Step 1: Simplify \( e^{\log x} \) Using the property of logarithms, we know that: \[ e^{\log x} = x \] Thus, we can rewrite the integral as: \[ I = \int (x + \sin x) \cos x \, dx \] ### Step 2: Distribute \( \cos x \) Now, we can distribute \( \cos x \) across the terms in the integral: \[ I = \int x \cos x \, dx + \int \sin x \cos x \, dx \] ### Step 3: Solve \( \int x \cos x \, dx \) To solve \( \int x \cos x \, dx \), we can use integration by parts. Let: - \( u = x \) and \( dv = \cos x \, dx \) Then, we have: - \( du = dx \) and \( v = \sin x \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int x \cos x \, dx = x \sin x - \int \sin x \, dx \] Now, we compute \( \int \sin x \, dx \): \[ \int \sin x \, dx = -\cos x \] Thus, \[ \int x \cos x \, dx = x \sin x + \cos x \] ### Step 4: Solve \( \int \sin x \cos x \, dx \) We can use the double angle identity for sine: \[ \sin x \cos x = \frac{1}{2} \sin(2x) \] Thus, \[ \int \sin x \cos x \, dx = \int \frac{1}{2} \sin(2x) \, dx \] Now, integrating \( \frac{1}{2} \sin(2x) \): \[ \int \frac{1}{2} \sin(2x) \, dx = -\frac{1}{4} \cos(2x) \] ### Step 5: Combine the results Now, we can combine the results of both integrals: \[ I = \left( x \sin x + \cos x \right) - \frac{1}{4} \cos(2x) + C \] ### Final Answer Thus, the final result of the integral is: \[ I = x \sin x + \cos x - \frac{1}{4} \cos(2x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(e^(logx)+sinx)cosxdx

The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c is the constant of integration)

int e^sinx cosx dx

int (2 - sinx)/(2 cos x ) dx

int ((1- sinx))/(cos^(2)x) dx= ?

(i) int e^(3logx)dx

int(cos^(3)x)e^(log(sinx))dx=

int(dx)/(sinx cos ^(2)x)

int (1-sinx )/ (1-cos x) dx=?

int(sinx)/((1+cos x)^(2))dx=