Home
Class 12
MATHS
int(x+tanx)/(x.sinx.secx)dx=...

`int(x+tanx)/(x.sinx.secx)dx=`

A

`(x^(2))/(2)+log(secx)+c`

B

`log(x.sinx)+c`

C

`log(x.sinx)+c`

D

`-(x^(2))/(2).cosx.log(sec x +tanx)+c`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

inte^(tanx)(sinx-secx)dx is equal to

Evaluate the following : int_(0)^(pi)(x tanx)/(secx "cosec x")dx

int(tanx)/((1-sinx))dx

Evaluate int(tanx)/(secx+tanx)dx

int_0^pi tanx/(sinx+tanx)dx

int(In(tanx))/(sinx cosx)dx " is equal to "

Evaluate int(sqrt(tanx))/(sinx cosx)dx

Evaluate int(sqrt(tanx))/(sinx. cos x) dx

inte^(sinx)((sinx+1)/(secx))dx is equal to

int_0^pi (xtanx)/(secx+tanx)dx