Home
Class 12
MATHS
int(log(logx))/(x.logx)dx=...

`int(log(logx))/(x.logx)dx=`

A

`log(x.logx)+c`

B

`(1)/(2)[log(logx)]^(2)+c`

C

`(1)/(2)(x.logx)^(2)+c`

D

`x.log(logx)+c`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int(log(logx))/(x)dx

"If "int (log (logx))/(7x)dx=klogx[1-log(x)]+c , then k=.....

int(cos(logx))/(x)dx

int (log x)/(1+logx)^2 dx

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

"F i n d"int[log(logx)+1/((logx)^2)]dx Find log (log x)+ |dx 2 (log x)

int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C , then