Home
Class 12
MATHS
If f(x) is continuous at x=0, where f(x...

If `f(x)` is continuous at `x=0`, where `f(x)={:{((1-cos x)/(x)", for " x!=0),(k ", for" x = 0 ):}`, then `k=`

A

`1/2`

B

`(-1)/(2)`

C

`1/4`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) for the function \( f(x) \) defined as: \[ f(x) = \begin{cases} \frac{1 - \cos x}{x} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases} \] we need to ensure that \( f(x) \) is continuous at \( x = 0 \). For continuity at a point, the following condition must hold: \[ \lim_{x \to 0} f(x) = f(0) \] ### Step 1: Calculate the limit as \( x \) approaches 0 from the right We first find the limit of \( f(x) \) as \( x \) approaches 0: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1 - \cos x}{x} \] ### Step 2: Identify the form of the limit As \( x \) approaches 0, both the numerator and denominator approach 0, resulting in an indeterminate form \( \frac{0}{0} \). ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. We differentiate the numerator and denominator: - The derivative of the numerator \( 1 - \cos x \) is \( \sin x \). - The derivative of the denominator \( x \) is \( 1 \). Thus, we have: \[ \lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{\sin x}{1} \] ### Step 4: Evaluate the limit Now we evaluate the limit: \[ \lim_{x \to 0} \sin x = 0 \] So, we find: \[ \lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \] ### Step 5: Set the limit equal to \( k \) Since \( f(0) = k \), we have: \[ \lim_{x \to 0} f(x) = k \] Thus, we can set: \[ 0 = k \] ### Conclusion Therefore, the value of \( k \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos
  • DEFINITE INTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|243 Videos

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x)={:{((1-cos k x)/(x^(2))", for " x!=0),(1/2 ", for " x=0):} , then k=

If f(x) is continuous at x=0 , where f(x)={:{((1-cos k x)/(x^(2))", for " x!=0),(1/2 ", for " x=0):} , then k=

If f(x) is continuous at x=0 , where f(x)={:{((1+3x)^(1/x)", for " x != 0 ),(k", for " x =0):} , then k=

If f(x) is continuous at x=0 , where f(x)={:{((3^(x)-3^(-x))/(sin x)", for " x!=0),(k", for " x=0):} , then k=

If f(x) is continuous at x=0 , where f(x)={:{((9^(x)-9^(-x))/(sin x)", for " x!=0),(k", for " x=0):} , then k=

If f(x) is continuous at x=0 , where f(x)={:{((log (1+kx))/(sin x)", for " x!=0),(5", for " x=0):} , then k=

If f(x) is continuous at x=0 , where f(x)={:{(log_((1-2x))(1+2x)", for " x!=0),(k", for " x=0):} , then k=

If f(x) is continuous at x=0 , where f(x)={:{((sec^(2)x)^(cot^(2)x)", for " x!=0),(k", for " x=0):} , then k=

If f(x) is continuous at x=0 , where f(x)={:{((8^(x)-2^(x))/(k^(x)-1)", for " x!=0),(2", for " x=0):} , then k=

If f(x) is continuous at x=0 , where f(x){:{((1)/(1+e^(1/x))", for " x!=0),(k", for " x=0):} , then k=

NIKITA PUBLICATION-CONTINUITY-MULTIPLE CHOICE QUESTIONS
  1. If f(x) is continuous at x=0, where f(x)=(sin (a+x)-sin (a-x))/(tan (a...

    Text Solution

    |

  2. f:R->R is defined by f(x)={(cos3x-cosx)/(x^2), x!=0lambda, x=0 and f ...

    Text Solution

    |

  3. If f(x) is continuous at x=0, where f(x)={:{((1-cos x)/(x)", for " x!...

    Text Solution

    |

  4. If f(x) is continuous at x=0, where f(x)={:{((1-cos k x)/(x^(2))", fo...

    Text Solution

    |

  5. If f(x) is continuous at x=0, where f(x)=(1-cos 3x)/( x tan x) for x ...

    Text Solution

    |

  6. If the function f(x) {((1 - cos 4x)/(8x^(2))",",x !=0),(" k,",x...

    Text Solution

    |

  7. If f(x) = is continuous at x=0, where f(x)=((1-cos2x)(3+cos x))/(x t...

    Text Solution

    |

  8. If alpha, beta are the roots of ax^(2)+bx+c=0 and f(x) is continuous a...

    Text Solution

    |

  9. If f(x) is continuous at x=0, where f(x)={:{((cos^(2)x-sin^(2)x-1)/(s...

    Text Solution

    |

  10. If f(x) is continuous at x=a, where f(x)=(sin (a+x)+sin(a-x)-2 sin a)...

    Text Solution

    |

  11. If f(x) is continuous at x=0, where f(x)=(3-4cos x+cos 2x)/(x^(2)), f...

    Text Solution

    |

  12. If f(x) is continuous at x=0, where f(x)=(3-4cos x+cos 2x)/(x^(4)), f...

    Text Solution

    |

  13. The value of k which makes f(x)={:{(sin(1/x)", for " x!=0),(k", for "...

    Text Solution

    |

  14. If the function f(x) defined by f(x)={(x"sin"(1)/(x)",", "for "x ne ...

    Text Solution

    |

  15. If f(x) is continuous at x=a, where f(x)=(x-a)sin((1)/(x-a)), for x!=...

    Text Solution

    |

  16. If (x)=(1-sqrt3tanx)/(pi-6x),"for"x nepi/6 is continous at x=pi/6, "fi...

    Text Solution

    |

  17. If f(x) is continuous at x=pi/4, where f(x)=(tan(pi/4 -x))/(cot 2x), f...

    Text Solution

    |

  18. Find the value of k, if the functions are continuous at the points giv...

    Text Solution

    |

  19. If f(x) is continuous at x=pi/2, where f(x)=(1-sin x)/((pi/2 -x)^(2))...

    Text Solution

    |

  20. If f(x) is continuous at x=pi/2, where f(x)=(1-sin x)/((pi-2x)^(2)), ...

    Text Solution

    |