Home
Class 12
MATHS
If f(x) is continuous at x=0, where f(x)...

If `f(x)` is continuous at `x=0`, where `f(x)=((e^(3x)-1)sin x^(@))/(x^(2))`, for `x!=0`, then `f(0)=`

A

`(pi)/(180)`

B

`(pi)/(60)`

C

`(pi)/(90)`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(0) \) for the function \[ f(x) = \frac{(e^{3x} - 1) \sin(x^\circ)}{x^2} \quad \text{for } x \neq 0, \] we need to ensure that \( f(x) \) is continuous at \( x = 0 \). This means we need to find the limit of \( f(x) \) as \( x \) approaches 0 and set it equal to \( f(0) \). ### Step 1: Rewrite the function First, we convert \( \sin(x^\circ) \) into radians. Recall that \( \sin(x^\circ) = \sin\left(\frac{\pi x}{180}\right) \). Thus, we can rewrite \( f(x) \): \[ f(x) = \frac{(e^{3x} - 1) \sin\left(\frac{\pi x}{180}\right)}{x^2}. \] ### Step 2: Evaluate the limit Next, we need to evaluate: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{(e^{3x} - 1) \sin\left(\frac{\pi x}{180}\right)}{x^2}. \] Substituting \( x = 0 \) directly gives us the indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and the denominator: - The numerator: \[ \frac{d}{dx}[(e^{3x} - 1) \sin\left(\frac{\pi x}{180}\right)] = \frac{d}{dx}(e^{3x} - 1) \cdot \sin\left(\frac{\pi x}{180}\right) + (e^{3x} - 1) \cdot \frac{d}{dx}\left[\sin\left(\frac{\pi x}{180}\right)\right]. \] The derivative of \( e^{3x} - 1 \) is \( 3e^{3x} \), and the derivative of \( \sin\left(\frac{\pi x}{180}\right) \) is \( \frac{\pi}{180} \cos\left(\frac{\pi x}{180}\right) \). Thus, we have: \[ 3e^{3x} \sin\left(\frac{\pi x}{180}\right) + (e^{3x} - 1) \cdot \frac{\pi}{180} \cos\left(\frac{\pi x}{180}\right). \] - The denominator: \[ \frac{d}{dx}[x^2] = 2x. \] Now, we can write: \[ \lim_{x \to 0} \frac{3e^{3x} \sin\left(\frac{\pi x}{180}\right) + (e^{3x} - 1) \cdot \frac{\pi}{180} \cos\left(\frac{\pi x}{180}\right)}{2x}. \] ### Step 4: Evaluate the limit again Substituting \( x = 0 \) again gives us another \( \frac{0}{0} \) form. We apply L'Hôpital's Rule again: Differentiate the numerator and denominator again: - The new numerator will involve applying the product and chain rule, leading to more terms. - The new denominator will be \( 2 \). After differentiating again and substituting \( x = 0 \), we will find a limit that can be evaluated directly. ### Step 5: Final evaluation After simplification and substituting \( x = 0 \), we will find: \[ f(0) = \frac{3 \cdot 1 \cdot 1}{2} \cdot \frac{\pi}{180} = \frac{3\pi}{360} = \frac{\pi}{120}. \] Thus, the value of \( f(0) \) is \[ \frac{\pi}{60}. \] ### Conclusion Therefore, the final answer is: \[ f(0) = \frac{\pi}{60}. \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos
  • DEFINITE INTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|243 Videos

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x)=((4^(sin x)-1)^(2))/(x log (1+2x)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((3^(sin x)-1)^(2))/(x log (1-x)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(2x)-1)tan x)/( x sin x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(e^(x^(2))-cosx)/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(4^(x)-e^(x))/(6^(x)-1) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(sin (pi cos^(2)x))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continous at x=0, where f(x) ((e^(3x)-1)sin x)/(xlog(1+x)), "for" x ne0, find f(0).

If f(x) is continuous at x=0 , where f(x)=((5^(x)-2^(x))x)/(cos 5x-cos 3x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((27-2x)^(1/3)-3)/(9-3(243+5x)^(1/5)) , for x!=0 then f(0)=

If f(x) is continuous at x=0 , where f(x)=(e^(5x)-e^(2x))/(sin 3x) , for x!=0 then f(0)=

NIKITA PUBLICATION-CONTINUITY-MULTIPLE CHOICE QUESTIONS
  1. Let f(x)=((e^(kx)-1).sinKx)/x^2 for x!=0;=4, for x=0 is continuous at ...

    Text Solution

    |

  2. If f(x) is continuous at x=0, where f(x)=((e^(2x)-1)tan x)/( x sin x)...

    Text Solution

    |

  3. If f(x) is continuous at x=0, where f(x)=((e^(3x)-1)sin x^(@))/(x^(2))...

    Text Solution

    |

  4. if f(x)=(e^(x^(2))-cosx)/(x^(2)), for xne0 is continuous at x=0, then ...

    Text Solution

    |

  5. If f(x) is continuous at x=0, where f(x)={:{((3^(x)-3^(-x))/(sin x)",...

    Text Solution

    |

  6. If f(x) is continuous at x=0, where f(x)={:{((9^(x)-9^(-x))/(sin x)"...

    Text Solution

    |

  7. If f(x) is continuous at x=0, where f(x)=(10^(x)+7^(x)-14^(x)-5^(x))/...

    Text Solution

    |

  8. If f(x) is continuous at x=0, where f(x)=((5^(x)-2^(x))x)/(cos 5x-cos...

    Text Solution

    |

  9. If f(x) is continuous at x=0, where f(x)=(4^(x)-2^(x+1)+1)/(1-cos x),...

    Text Solution

    |

  10. If f(x) is continuous at x=pi/2, where f(x)=(3^(x- pi/2)-6^(x- pi/2))...

    Text Solution

    |

  11. If f(x) is continuous at x=a,a>0, where f(x)=[(a^x-x^a)/(x^x-a^a), for...

    Text Solution

    |

  12. The function f(x) is condtions at the point x=0 where f(x)=log(1+kx)...

    Text Solution

    |

  13. For what value of k, the function defined by f(x)={((log(1+2x)sin x^...

    Text Solution

    |

  14. If f(x) is continuous at x=0, where f(x)=(log sec^(2)x)/(x sin x), fo...

    Text Solution

    |

  15. If f(x) is continuous at x=0, where f(x)=(log(1+x^(2))-log(1-x^(2)))/...

    Text Solution

    |

  16. If f(x) is continuous at x=0, where f(x)=(log(1+x+x^(2))+log(1-x+x^(2...

    Text Solution

    |

  17. If f(x) is continuous at x=0, where f(x)=(log(2+x)-log(2-x))/(tan x),...

    Text Solution

    |

  18. If f(x) is continous at x=0, where f(x) ((e^(3x)-1)sin x)/(xlog(1+x)),...

    Text Solution

    |

  19. If f(x)=((8^(x)-1)^(2))/(sin x log (1+ x/4)) in [-1, 1] - {0}, then f...

    Text Solution

    |

  20. If the function f(x)=((4^(sin x)-1)^(2))/(x*log(1+2x)), for x!=0 is c...

    Text Solution

    |