Home
Class 12
MATHS
If f(x) is continuous at x=0, where f(x...

If `f(x)` is continuous at `x=0`, where `f(x)=((3^(sin x)-1)^(2))/(x log (1-x))`, for `x!=0`, then `f(0)=`

A

`(log 3)^(2)`

B

log 9

C

`1/2 ` log 3

D

log 3

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(0) \) for the function \[ f(x) = \frac{(3^{\sin x} - 1)^2}{x \log(1 - x)} \] given that \( f(x) \) is continuous at \( x = 0 \), we need to evaluate the limit as \( x \) approaches 0: \[ \lim_{x \to 0} f(x) = f(0) \] ### Step 1: Evaluate the limit First, we substitute \( x = 0 \) into the function: \[ f(0) = \frac{(3^{\sin(0)} - 1)^2}{0 \cdot \log(1 - 0)} \] Since \( \sin(0) = 0 \), we have: \[ 3^{\sin(0)} - 1 = 3^0 - 1 = 1 - 1 = 0 \] Thus, the limit takes the form \( \frac{0^2}{0} \), which is indeterminate. We need to apply L'Hôpital's rule or find another way to evaluate the limit. ### Step 2: Rewrite the expression Using the property of limits, we can rewrite the numerator: \[ 3^{\sin x} - 1 \approx \sin x \cdot \log 3 \quad \text{as } x \to 0 \] This is derived from the fact that: \[ \lim_{x \to 0} \frac{3^{\sin x} - 1}{\sin x} = \log 3 \] Thus, we can express the numerator as: \[ (3^{\sin x} - 1)^2 \approx (\sin x \cdot \log 3)^2 = \sin^2 x \cdot (\log 3)^2 \] ### Step 3: Substitute back into the limit Now substitute this back into the limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin^2 x \cdot (\log 3)^2}{x \log(1 - x)} \] ### Step 4: Simplify the denominator Next, we know that: \[ \log(1 - x) \approx -x \quad \text{as } x \to 0 \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{\sin^2 x \cdot (\log 3)^2}{x \cdot (-x)} = \lim_{x \to 0} \frac{\sin^2 x \cdot (\log 3)^2}{-x^2} \] ### Step 5: Apply the limit Using the fact that \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \): \[ \lim_{x \to 0} \frac{\sin^2 x}{x^2} = 1 \] Thus, we have: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin^2 x \cdot (\log 3)^2}{-x^2} = -(\log 3)^2 \] ### Conclusion Therefore, we find that: \[ f(0) = -(\log 3)^2 \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos
  • DEFINITE INTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|243 Videos

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x)=((4^(sin x)-1)^(2))/(x log (1+2x)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(log(1+x^(2))-log(1-x^(2)))/(sec x- cos x) , for x !=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(log(1+x+x^(2))+log(1-x+x^(2)))/(sin x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(sin (a+x)-sin (a-x))/(tan (a+x)-tan (a-x)), x != 0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(2x)-1)tan x)/( x sin x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(sin(x^(2)-x))/(x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(sin (pi cos^(2)x))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(4^(x)-e^(x))/(6^(x)-1) , for x!=0 , then f(0)=

NIKITA PUBLICATION-CONTINUITY-MULTIPLE CHOICE QUESTIONS
  1. If f(x)=((8^(x)-1)^(2))/(sin x log (1+ x/4)) in [-1, 1] - {0}, then f...

    Text Solution

    |

  2. If the function f(x)=((4^(sin x)-1)^(2))/(x*log(1+2x)), for x!=0 is c...

    Text Solution

    |

  3. If f(x) is continuous at x=0, where f(x)=((3^(sin x)-1)^(2))/(x log (...

    Text Solution

    |

  4. If f(x) is continuous at x=0, where f(x)={:{(((e^(x)-1)^(4))/(sin(x^(2...

    Text Solution

    |

  5. If f(x)=(e^(x)+e^(-x)-2)/(x sin x), for x in [(-pi)/(2), (pi)/(2)]-{0}...

    Text Solution

    |

  6. The function defined by f(x)={:{((1+tan^(2)sqrt(x))^((1)/(2x))", for "...

    Text Solution

    |

  7. The function defined by f(x)={((x^(2)+e^((1)/(2-x)))^(-1)",",x ne 2)...

    Text Solution

    |

  8. Is the function defined by f(x)=x^2-sinx+5continuous at x=pi?

    Text Solution

    |

  9. If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , t...

    Text Solution

    |

  10. If f(x)={:{((x^(2)-9)/(x-3)", for " 0 lt x lt 3),(x+3", for " 3 le x l...

    Text Solution

    |

  11. If f(x)={:{((sin 2x)/(sqrt(1-cos 2x))", for " 0 lt x lt pi/2),((cos x)...

    Text Solution

    |

  12. If f(x)={:{(x-1", for " 1 le x lt 2),(2x+3", for " 2 le x le 3):}, the...

    Text Solution

    |

  13. If f(x)={:{(x sin x", for " 0 lt x le pi/2),(pi/2 sin (pi+x)", for " p...

    Text Solution

    |

  14. If f(x) is continuous at x=0, where f(x)={((sin x)/(x)+cos x", for " ...

    Text Solution

    |

  15. If f(x)={:{(x+2", if " x le 4),(x+4", if " x gt 4):}, then

    Text Solution

    |

  16. If f(x)={:{(2x", if " x lt 2),(2", if " x=2),(x^(2)", if " x gt2):}, t...

    Text Solution

    |

  17. If f(x)={:{(x-1", for " 1 le x lt 2),(2", for " x=2),(2x-3", for " 2 l...

    Text Solution

    |

  18. If f(x)={:{(x^(2)", for " x le 1),(x+3", for " x gt 1):}, then at x=1

    Text Solution

    |

  19. If f(x)=sqrt(x-2), for 2 lt x lt 4, then f(x) is

    Text Solution

    |

  20. If f(x)={:{(1-x", for " 0 lt x le 1), ( 1/2 ", for " x=0):}, then in [...

    Text Solution

    |