Home
Class 12
MATHS
If f(x) is continuous on [0, 8] , where ...

If `f(x)` is continuous on [0, 8] , where `f(x)={:{(x^(2)+ax+6", for " 0 le x lt 2),(3x+2", for " 2 le x le 4),(2ax+5b", for " 4 lt x le 8):}`, then

A

`a=-1, b=(22)/(5)`

B

`a=-1, b=(-8)/(5)`

C

`a=-1, b=(-22)/(5)`

D

`a=1, b=8/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at the points where the definition of the function changes, specifically at \( x = 2 \) and \( x = 4 \). ### Step 1: Check continuity at \( x = 2 \) The function is defined as: - \( f(x) = x^2 + ax + 6 \) for \( 0 \leq x < 2 \) - \( f(x) = 3x + 2 \) for \( 2 \leq x \leq 4 \) To ensure continuity at \( x = 2 \), we need to check that: \[ \lim_{x \to 2^-} f(x) = f(2) \] Calculating \( \lim_{x \to 2^-} f(x) \): \[ \lim_{x \to 2^-} f(x) = 2^2 + a(2) + 6 = 4 + 2a + 6 = 10 + 2a \] Calculating \( f(2) \): \[ f(2) = 3(2) + 2 = 6 + 2 = 8 \] Setting these equal for continuity: \[ 10 + 2a = 8 \] ### Step 2: Solve for \( a \) Rearranging the equation: \[ 2a = 8 - 10 \] \[ 2a = -2 \] \[ a = -1 \] ### Step 3: Check continuity at \( x = 4 \) Now we check continuity at \( x = 4 \): - \( f(x) = 3x + 2 \) for \( 2 \leq x \leq 4 \) - \( f(x) = 2ax + 5b \) for \( 4 < x \leq 8 \) We need: \[ \lim_{x \to 4^-} f(x) = f(4) = \lim_{x \to 4^+} f(x) \] Calculating \( \lim_{x \to 4^-} f(x) \): \[ \lim_{x \to 4^-} f(x) = 3(4) + 2 = 12 + 2 = 14 \] Calculating \( f(4) \): \[ f(4) = 3(4) + 2 = 14 \] Calculating \( \lim_{x \to 4^+} f(x) \): \[ \lim_{x \to 4^+} f(x) = 2a(4) + 5b = 8a + 5b \] Setting these equal for continuity: \[ 14 = 8a + 5b \] ### Step 4: Substitute \( a \) and solve for \( b \) Substituting \( a = -1 \): \[ 14 = 8(-1) + 5b \] \[ 14 = -8 + 5b \] \[ 5b = 14 + 8 \] \[ 5b = 22 \] \[ b = \frac{22}{5} \] ### Final Result The values we found are: - \( a = -1 \) - \( b = \frac{22}{5} \)
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos
  • DEFINITE INTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|243 Videos

Similar Questions

Explore conceptually related problems

If f(x)={:{(x^(2)-4", for " 0 le x le 2),(2x+3", for " 2 lt x le 4),(x^(2)-5", for " 4 lt x le 6):} , then

If f(x) is continuous in [0, 3], where f(x)={:{(3x-4", for " 0 le x le 2),(2x+k", for " 2 lt x le 3):} , then k=

If f(x)={((2x+5)/(x+1)", for " 0 le x lt 2),(4x-5", for " 2 le x le 4),((x^(2)+2)/(x-5)", for " 4 lt x le 6"," x !=5):} then

If f(x) is continuous on [-2, 2], where f(x)={:{((sin ax)/(x)+2", for " -2 le x lt 0),(3x+5", for " 0 le x le 1),(sqrt(x^(2)+8)-b", for " 1 lt x lt 2):} , then a+b=

If f(x)={:{(3x+5", for " 0 le x lt 3),(2x+8", for " 3 le x lt 5),(x+13", for " 5 le x le 10):} , then

If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , then

If f(x) {:(=x^(2)+ax+b", if "0 le x lt 2 ),(= 3x+2", if " 2 le x le 4 ),(=2ax + 5b ", if " 4 lt x le 8 ) :} is continuous on [ 0,8] then a-b = ……

If f (x) is continous on [0,8] defined as f(x)=x^(2)+ax, "for" 0lex lt 2 =3x+2, "for" 2 lex le4 =2ax+5b, "for" 4 lt x le 8, find a and b.

If f(x) is continuous in [-2, 2], where f(x)={:{ ((sin ax)/(x)-1", for "-2 le x lt 0),(2x+1", for " 0 le x le 1),(2bsqrt(x^(2)+3)-1", for " 1 lt x le 2):} , then a+b=

If f(x)={:{(x", for " 0 le x lt 1),(2", for " x=1),(x+1", for " 1 lt x le 2):} , then f is

NIKITA PUBLICATION-CONTINUITY-MULTIPLE CHOICE QUESTIONS
  1. If the function f(x)= {(5", " x le 2),(ax+b", "2 ltx le ...

    Text Solution

    |

  2. If f(x) is continuous at x=1, where f(x)={:{(kx^(2)", for " x ge 1),(...

    Text Solution

    |

  3. If f(x) is continuous on [0, 8] , where f(x)={:{(x^(2)+ax+6", for " 0...

    Text Solution

    |

  4. If f(x) is continuous in [0, 3], where f(x)={:{(3x-4", for " 0 le x l...

    Text Solution

    |

  5. If f(x) continuous on its domain, where f(x)={:{(6", for " x le 2), (...

    Text Solution

    |

  6. If f (x) is continuous on 0-4, 2], defined as f(x)=6b-3ax, "for" -4 ...

    Text Solution

    |

  7. If f(x) is continuous at x=3, then f(x)=ax+1," for x "le3 =bx+...

    Text Solution

    |

  8. If f(x) is continuous in [-2, 2], where f(x)={:{(x+a", for " x lt 0)...

    Text Solution

    |

  9. If f(x)={(sqrt(1+k x)-sqrt(1-k x))/x for 1 le x< 0 and 2x^2+3x-2 for...

    Text Solution

    |

  10. If the function f:R to R given by f(x)={(x+a"," , "if "x le 1),(3...

    Text Solution

    |

  11. If f(x)={:{(ax^(2)-b", for " 0 le x lt1),(2", for " x=1),(x+1", for " ...

    Text Solution

    |

  12. If the derivative of the function f(x) ={ax^2+b , x lt -1 and bx^2 ...

    Text Solution

    |

  13. If f(x) is continuous at x=2, where f(x)={:{(4x-3", for " x lt 2),(kx...

    Text Solution

    |

  14. If f(x) is continuous at x=0, where f(x)={:{((1-cos 4x)/(x^(2))", for...

    Text Solution

    |

  15. If f(x) is continuous at x=0, where f(x)={:{((sin 4x)/(5x)+a", for " ...

    Text Solution

    |

  16. If f(x) = (sin pi x)/(x-1)+a, " for " x lt 1 = 2 pi , " for " x= 1 ...

    Text Solution

    |

  17. Let f(x)={{:(,sin2x,0 lt x le xpi//6),(,ax+b,pi//6 lt x lt 1):} If f(x...

    Text Solution

    |

  18. Determine the values of a , b , c for which the function f(x)={(sin(a+...

    Text Solution

    |

  19. Determine the values of a , b , c for which the function f(x)={(sin(a+...

    Text Solution

    |

  20. If f(x) is continuous on [-2, 2], where f(x)={:{((sin ax)/(x)+2", for...

    Text Solution

    |