Home
Class 12
MATHS
If f(x) is continuous at x=0, where f(x...

If `f(x)` is continuous at `x=0`, where `f(x)={:{((sin 4x)/(5x)+a", for " x gt 0),(x+4-b", for " x lt 0),(1", for " x=0):}`, then

A

`a=1/5, b=3`

B

`a=(-1)/(5), b=-3`

C

`a=1/5, b=-3`

D

`a=( -1)/(5), b=3`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to analyze the left-hand limit, right-hand limit, and the value of the function at \( x = 0 \). Given the piecewise function: \[ f(x) = \begin{cases} \frac{\sin(4x)}{5x} + a & \text{for } x > 0 \\ x + 4 - b & \text{for } x < 0 \\ 1 & \text{for } x = 0 \end{cases} \] ### Step 1: Calculate the Left-Hand Limit (LHL) as \( x \) approaches 0 For \( x < 0 \): \[ \text{LHL} = \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x + 4 - b) = 0 + 4 - b = 4 - b \] ### Step 2: Calculate the Right-Hand Limit (RHL) as \( x \) approaches 0 For \( x > 0 \): \[ \text{RHL} = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(\frac{\sin(4x)}{5x} + a\right) \] Using the limit property \( \lim_{x \to 0} \frac{\sin(kx)}{kx} = 1 \): \[ = \frac{1}{5} \cdot 4 + a = \frac{4}{5} + a \] ### Step 3: Set the Left-Hand Limit equal to the Right-Hand Limit For continuity at \( x = 0 \), we need: \[ 4 - b = \frac{4}{5} + a \tag{1} \] ### Step 4: Set the Left-Hand Limit equal to the value of the function at \( x = 0 \) We also know: \[ f(0) = 1 \] Thus, we set: \[ 4 - b = 1 \tag{2} \] ### Step 5: Solve the equations From equation (2): \[ 4 - b = 1 \implies b = 4 - 1 = 3 \] Substituting \( b = 3 \) into equation (1): \[ 4 - 3 = \frac{4}{5} + a \implies 1 = \frac{4}{5} + a \] Rearranging gives: \[ a = 1 - \frac{4}{5} = \frac{1}{5} \] ### Final Values Thus, the values of \( a \) and \( b \) are: \[ a = \frac{1}{5}, \quad b = 3 \] ### Summary The final answer is: \[ \boxed{a = \frac{1}{5}, \quad b = 3} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos
  • DEFINITE INTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|243 Videos

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x)={:{(k(x^(2)-2)", for " x le 0),(4x+1", for " x gt 0):} , then k=

If f(x) is continuous at x=0 , where f(x)={((sin x)/(x)+cos x", for " x gt 0),((4(1-sqrt(1-x)))/(x)", for " x lt 0):} , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((4-3x)/(4))^(8/x)", for " x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(sin(x^(2)-x))/(x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(1+2x)^(1/x)", for " x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((4-3x)/(4+5x))^(1/x)", for " x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)={:{((log (1+kx))/(sin x)", for " x!=0),(5", for " x=0):} , then k=

If f(x) is continuous in [-2, 2], where f(x)={:{(x+a", for " x lt 0),(x", for " 0 le x lt 1),(b-x", for " x ge 1):} , then a+b=

If f(x) is continuous at x=0 , where f(x)=sin x-cos x , for x!=0 , then f(0)=

NIKITA PUBLICATION-CONTINUITY-MULTIPLE CHOICE QUESTIONS
  1. If f(x) is continuous at x=2, where f(x)={:{(4x-3", for " x lt 2),(kx...

    Text Solution

    |

  2. If f(x) is continuous at x=0, where f(x)={:{((1-cos 4x)/(x^(2))", for...

    Text Solution

    |

  3. If f(x) is continuous at x=0, where f(x)={:{((sin 4x)/(5x)+a", for " ...

    Text Solution

    |

  4. If f(x) = (sin pi x)/(x-1)+a, " for " x lt 1 = 2 pi , " for " x= 1 ...

    Text Solution

    |

  5. Let f(x)={{:(,sin2x,0 lt x le xpi//6),(,ax+b,pi//6 lt x lt 1):} If f(x...

    Text Solution

    |

  6. Determine the values of a , b , c for which the function f(x)={(sin(a+...

    Text Solution

    |

  7. Determine the values of a , b , c for which the function f(x)={(sin(a+...

    Text Solution

    |

  8. If f(x) is continuous on [-2, 2], where f(x)={:{((sin ax)/(x)+2", for...

    Text Solution

    |

  9. Find the values of a and b so that the function f(x)={{:(x+asqrt2...

    Text Solution

    |

  10. Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"fo...

    Text Solution

    |

  11. If the function f(x) is continuous in the interval [-2, 2]. find the ...

    Text Solution

    |

  12. If f(x) is continuous in (-oo, 6), where f(x)={: {(1+sin ((pi x)/(2))...

    Text Solution

    |

  13. If f(x)={(ax+1",", x le (pi)/(2)),(sinx+b",", x gt (pi)/(2)):} is cont...

    Text Solution

    |

  14. If f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", for " x !=0),(1", for " x=0):}, ...

    Text Solution

    |

  15. If f(x) is continuous at x=0, where f(x){:{((1)/(1+e^(1/x))", for " x...

    Text Solution

    |

  16. The function f(x)=k ( k in R) at every x in R is

    Text Solution

    |

  17. The composition of two continuous functions is a continuous function.

    Text Solution

    |

  18. If f(x)= sin x, then f is

    Text Solution

    |

  19. If f(x)=sin x^(2), then f is

    Text Solution

    |

  20. If f(x)=a^(x), a gt 0, then f is

    Text Solution

    |