Home
Class 12
MATHS
If f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", fo...

If `f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", for " x !=0),(1", for " x=0):}`, then f is

A

continuous at `x=0`

B

discontinuous at `x=0`

C

continuous if `f(0)=-1`

D

discontinuous if `f(0)=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) defined as: \[ f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1} & \text{for } x \neq 0 \\ 1 & \text{for } x = 0 \end{cases} \] we need to check the left-hand limit, right-hand limit, and the value of the function at \( x = 0 \). ### Step 1: Calculate the left-hand limit as \( x \) approaches 0 from the negative side. We need to find: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{e^{1/x} - 1}{e^{1/x} + 1} \] As \( x \) approaches 0 from the left (negative side), \( \frac{1}{x} \) approaches \( -\infty \). Therefore, we can evaluate: \[ e^{1/x} \to e^{-\infty} = 0 \] Substituting this into our limit: \[ \lim_{x \to 0^-} f(x) = \frac{0 - 1}{0 + 1} = \frac{-1}{1} = -1 \] ### Step 2: Calculate the right-hand limit as \( x \) approaches 0 from the positive side. Next, we find: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{1/x} - 1}{e^{1/x} + 1} \] As \( x \) approaches 0 from the right (positive side), \( \frac{1}{x} \) approaches \( +\infty \). Thus, we have: \[ e^{1/x} \to e^{+\infty} = \infty \] Substituting this into our limit: \[ \lim_{x \to 0^+} f(x) = \frac{\infty - 1}{\infty + 1} = \frac{\infty}{\infty} = 1 \] ### Step 3: Evaluate the value of the function at \( x = 0 \). From the definition of the function, we have: \[ f(0) = 1 \] ### Step 4: Check for continuity at \( x = 0 \). For the function \( f(x) \) to be continuous at \( x = 0 \), the following must hold: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \] From our calculations: - \( \lim_{x \to 0^-} f(x) = -1 \) - \( \lim_{x \to 0^+} f(x) = 1 \) - \( f(0) = 1 \) Since the left-hand limit does not equal the right-hand limit, and the left-hand limit does not equal \( f(0) \), we conclude that: \[ f(x) \text{ is discontinuous at } x = 0. \] ### Final Conclusion: Thus, the function \( f(x) \) is discontinuous at \( x = 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos
  • DEFINITE INTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|243 Videos

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x){:{((1)/(1+e^(1/x))", for " x!=0),(k", for " x=0):} , then k=

If f(x)={((1+2x)^(1//x)",","for " x ne 0),(e^(2)",", "for " x =0):} , then

The function f given by f(x)={((e^(1//x)-1)/(e^(1//x)+1)",","if",x ne 0),(0",","if", x =0):} , is

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x)={(e^((1)/(x))/(1+e^((1)/(x)))",", x ne0),(0",",x=0):} , then

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

Examine the continuity of the following function at the indicated pionts. f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1), x ne 0),(,0, x =0):}" at x=0"

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0