Home
Class 12
MATHS
General solution of 8tan^(2)((x)/(2))=1+...

General solution of `8tan^(2)((x)/(2))=1+secx` is

A

`2npipmcos^(-1)((2)/(3)), ninZ`

B

`2npipmcos^(-1)((1)/(3)), ninZ`

C

`npipmcos^(-1)((2)/(3)), ninZ`

D

`npipmcos^(-1)((1)/(3)), ninZ`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 8 \tan^2\left(\frac{x}{2}\right) = 1 + \sec x \), we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that: \[ \tan^2\left(\frac{x}{2}\right) = \frac{\sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)} \] and \[ \sec x = \frac{1}{\cos x} \] Thus, we can rewrite the equation as: \[ 8 \frac{\sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)} = 1 + \frac{1}{\cos x} \] ### Step 2: Use the double angle identities Using the double angle identities: \[ \sin^2\left(\frac{x}{2}\right) = \frac{1 - \cos x}{2} \quad \text{and} \quad \cos^2\left(\frac{x}{2}\right) = \frac{1 + \cos x}{2} \] Substituting these into the equation gives: \[ 8 \frac{\frac{1 - \cos x}{2}}{\frac{1 + \cos x}{2}} = 1 + \frac{1}{\cos x} \] This simplifies to: \[ 8 \frac{1 - \cos x}{1 + \cos x} = 1 + \frac{1}{\cos x} \] ### Step 3: Clear the fractions To eliminate the fractions, we can multiply both sides by \( \cos x(1 + \cos x) \): \[ 8 \cos x (1 - \cos x) = (1 + \cos x) \cos x \] This simplifies to: \[ 8 \cos x - 8 \cos^2 x = \cos x + \cos^2 x \] ### Step 4: Rearrange the equation Rearranging gives: \[ 8 \cos x - \cos x - 8 \cos^2 x - \cos^2 x = 0 \] This simplifies to: \[ 7 \cos x - 9 \cos^2 x = 0 \] ### Step 5: Factor the equation Factoring out \( \cos x \): \[ \cos x (7 - 9 \cos x) = 0 \] This gives us two cases: 1. \( \cos x = 0 \) 2. \( 7 - 9 \cos x = 0 \) ### Step 6: Solve each case **Case 1:** \( \cos x = 0 \) This occurs at: \[ x = \frac{\pi}{2} + n\pi, \quad n \in \mathbb{Z} \] **Case 2:** \( 7 - 9 \cos x = 0 \) Solving gives: \[ \cos x = \frac{7}{9} \] The general solution for this is: \[ x = \cos^{-1}\left(\frac{7}{9}\right) + 2n\pi \quad \text{or} \quad x = -\cos^{-1}\left(\frac{7}{9}\right) + 2n\pi, \quad n \in \mathbb{Z} \] ### Final General Solution Combining both cases, the general solution is: \[ x = \frac{\pi}{2} + n\pi \quad \text{or} \quad x = \pm \cos^{-1}\left(\frac{7}{9}\right) + 2n\pi, \quad n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

The general solution of 8 tan^(2)""(x)/(2)=1+ sec x is

General solution of 2tan^(2)x=sec^(2)x is

General solution of tan^(2)x+sec2x=1 is

General solution of tan((2x)/(3))=sqrt(3) is

Solve: 8tan^(2)(x)/(2)=1+sec x

General solution of sin2x=(1)/(2) is

General solution of (1-tan^(2)x)/(sec^(2)x)=(1)/(2) is

General solution of 3(sec^(2)x+tan^(2)x)=5 is

General solution of cot^(2)x-tan^(2)x=4cot2x is

General solution of secx=sqrt(2) is