Home
Class 12
MATHS
If |[cos(A+B), -sin(A+B), cos2B], [sinA,...

If `|[cos(A+B), -sin(A+B), cos2B], [sinA, cosA, sinB], [-cosA, sinA, cosB]|=0`, then B=

A

`npi, ninZ`

B

`2npi, ninZ`

C

`(2npm1)(pi)/(2), ninZ`

D

`(2npipm1)pi, ninZ`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant and set it equal to zero. Let's break down the steps: ### Step 1: Write the Determinant We are given the determinant: \[ D = \begin{vmatrix} \cos(A+B) & -\sin(A+B) & \cos(2B) \\ \sin A & \cos A & \sin B \\ -\cos A & \sin A & \cos B \end{vmatrix} \] ### Step 2: Expand the Determinant We will expand the determinant along the first row: \[ D = \cos(A+B) \begin{vmatrix} \cos A & \sin B \\ \sin A & \cos B \end{vmatrix} - (-\sin(A+B)) \begin{vmatrix} \sin A & \sin B \\ -\cos A & \cos B \end{vmatrix} + \cos(2B) \begin{vmatrix} \sin A & \cos A \\ -\cos A & \sin A \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinants 1. For the first determinant: \[ \begin{vmatrix} \cos A & \sin B \\ \sin A & \cos B \end{vmatrix} = \cos A \cos B - \sin A \sin B = \cos(A+B) \] 2. For the second determinant: \[ \begin{vmatrix} \sin A & \sin B \\ -\cos A & \cos B \end{vmatrix} = \sin A \cos B + \sin B \cos A = \sin(A+B) \] 3. For the third determinant: \[ \begin{vmatrix} \sin A & \cos A \\ -\cos A & \sin A \end{vmatrix} = \sin^2 A + \cos^2 A = 1 \] ### Step 4: Substitute Back into the Determinant Now substituting back into the expression for \(D\): \[ D = \cos(A+B) \cdot \cos(A+B) + \sin(A+B) \cdot \sin(A+B) + \cos(2B) \cdot 1 \] This simplifies to: \[ D = \cos^2(A+B) + \sin^2(A+B) + \cos(2B) \] Using the Pythagorean identity \(\cos^2 x + \sin^2 x = 1\): \[ D = 1 + \cos(2B) \] ### Step 5: Set the Determinant Equal to Zero We set the determinant equal to zero: \[ 1 + \cos(2B) = 0 \] This simplifies to: \[ \cos(2B) = -1 \] ### Step 6: Solve for B The cosine function equals -1 at odd multiples of \(\pi\): \[ 2B = (2n + 1)\pi \quad \text{where } n \in \mathbb{Z} \] Dividing both sides by 2 gives: \[ B = \frac{(2n + 1)\pi}{2} = n\pi + \frac{\pi}{2} \] This means \(B\) can be expressed as: \[ B = \frac{\pi}{2} + n\pi \quad \text{where } n \in \mathbb{Z} \] ### Final Answer Thus, the value of \(B\) is: \[ B = n\pi + \frac{\pi}{2} \quad \text{where } n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinant. Prove that | [sinA, cosA, sinA + cosB], [sinB, cosA, sinB + cosB], [sinC, cosA, sinC + cosB] | = 0

|[sin^2A, sinA, cos^2A] , [sin^2B, sinB, cos^2B] , [sin^2C, sinC, cos^2C]|=-(sinA-sinB)(sinB-sinC)(sinC-sinA)

If sinA+sinB=C,&cosA+cosB=D , then sin(A+B)=?

If sinA+cosB=a and sinB+cosA=b then sin(A+B)=

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

Multiply sin(A+B)=sinA cosB+ cos A sinB and sin(A-B)=sinA cosB - cosA sin B

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

The value of 2sinA cos^(3)A -2sin^(3)A cosA is