Home
Class 12
MATHS
General solution of cotx+cosecx=sqrt(3) ...

General solution of `cotx+cosecx=sqrt(3)` is

A

`2npi+(pi)/(6), ninZ`

B

`2npi+(pi)/(3), ninZ`

C

`2npi+(pi)/(4), ninZ`

D

`2npi+(pi)/(2), ninZ`

Text Solution

AI Generated Solution

The correct Answer is:
To find the general solution of the equation \( \cot x + \csc x = \sqrt{3} \), we can follow these steps: ### Step 1: Rewrite the equation using sine and cosine We start by expressing cotangent and cosecant in terms of sine and cosine: \[ \cot x = \frac{\cos x}{\sin x}, \quad \csc x = \frac{1}{\sin x} \] Thus, the equation becomes: \[ \frac{\cos x}{\sin x} + \frac{1}{\sin x} = \sqrt{3} \] ### Step 2: Combine the fractions Now, we can combine the fractions on the left-hand side: \[ \frac{\cos x + 1}{\sin x} = \sqrt{3} \] ### Step 3: Cross-multiply Cross-multiplying gives us: \[ \cos x + 1 = \sqrt{3} \sin x \] ### Step 4: Rearranging the equation Rearranging this, we have: \[ \sqrt{3} \sin x - \cos x - 1 = 0 \] ### Step 5: Square both sides To eliminate the square root, we can square both sides: \[ (\sqrt{3} \sin x - \cos x - 1)^2 = 0 \] Expanding this gives: \[ 3 \sin^2 x - 2\sqrt{3} \sin x \cos x - 2\sqrt{3} \sin x + \cos^2 x + 2\cos x + 1 = 0 \] ### Step 6: Use the Pythagorean identity Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ 3(1 - \cos^2 x) - 2\sqrt{3} \sin x \cos x - 2\sqrt{3} \sin x + \cos^2 x + 2\cos x + 1 = 0 \] This simplifies to: \[ (3 - 3\cos^2 x + \cos^2 x + 1) - 2\sqrt{3} \sin x \cos x - 2\sqrt{3} \sin x = 0 \] \[ (4 - 2\cos^2 x) - 2\sqrt{3} \sin x (\cos x + 1) = 0 \] ### Step 7: Solve for \( \cos x \) This leads us to two cases: 1. \( \cos x + 1 = 0 \) 2. \( 2 - 2\cos^2 x - 2\sqrt{3} \sin x = 0 \) From the first case: \[ \cos x = -1 \Rightarrow x = \pi + 2n\pi, \quad n \in \mathbb{Z} \] From the second case, we can solve for \( \cos x = \frac{1}{2} \): \[ \cos x = \frac{1}{2} \Rightarrow x = \frac{\pi}{3} + 2n\pi \quad \text{or} \quad x = -\frac{\pi}{3} + 2n\pi \] ### Step 8: Combine the solutions The general solutions are: \[ x = \pi + 2n\pi \quad \text{and} \quad x = \frac{\pi}{3} + 2n\pi \quad \text{or} \quad x = -\frac{\pi}{3} + 2n\pi \] ### Final General Solution Thus, the general solution of the equation \( \cot x + \csc x = \sqrt{3} \) is: \[ x = \pi + 2n\pi \quad \text{or} \quad x = \frac{\pi}{3} + 2n\pi \quad \text{or} \quad x = -\frac{\pi}{3} + 2n\pi, \quad n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

General solution of cosecx=-sqrt(2) is

General solution of cosec3x=(-2)/(sqrt(3)) is

Find the principal and general solution of cot x=-sqrt(3)

General solution of tanx+cotx=2 is

cotx=-sqrt(3)

General solution of secx=sqrt(2) is

General solution of sqrt(2)cosecx+cotx=sqrt(3) is

General solution of cos3x=(1)/(sqrt(2)) is

General solution of tan((2x)/(3))=sqrt(3) is