Home
Class 12
MATHS
In triangle ABC, if sin^2A+sin^2B=sin^2C...

In triangle ABC, if `sin^2A+sin^2B=sin^2C`, then the triangle is

A

an equilateral

B

an isosceles

C

a right angled

D

a scalene

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

In Delta ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In a ABC,quad if sin^(2)A+sin^(2)B=sin^(2)C show that the triangle is right angled.

In Delta ABC , if sin^(2)A + sin^(2)B = sin^(2)C , then show that a^(2) + b^(2) = c^(2) .

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

In any triangle ABC, if sin A , sin B, sin C are in AP, then the maximum value of tan ""B/2 is

In a Delta ABC, if 4cos A cos B+sin2A+sin2B+sin2C=4 then triangle ABC is

In triangle ABC,the value of sin2A+sin2B+sin2C is equal to