Home
Class 12
MATHS
In triangleABC, if angleC=(pi)/(2), then...

In `triangleABC`, if `angleC=(pi)/(2),` then `(a^(2)-b^(2))/(a^(2)+b^(2))=`

A

`-2sin(A-B)`

B

`2sin(A-B)`

C

`-sin(A-B)`

D

`sin(A-B)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

In triangleABC , if angleC=(pi)/(2), then c-csinAtan((A)/(2))=

In triangle ABC , if angle C=(pi)/(2) , then prove sin(A-B)=(a^2-b^2)/(a^2+b^2) .

In triangleABC, a^(2)sin(B-C)=

In triangleABC, sin((B-C)/(2))=

In triangleABC, (c+a-b)tan((B)/(2))=

In triangleABC, (b+c-a)tan((A)/(2))=

In triangleABC, (a+b-c)tan((C)/(2))=

In triangleABC, s(s-b)tan((B)/(2))=

In a triangleABC, 2ac.sin((A-B+C)/2)=