Home
Class 12
MATHS
In triangleABC, if a=2, b=1, c=sqrt(3), ...

In `triangleABC,` if `a=2, b=1, c=sqrt(3)`, then `angleA=`

A

`90^(@)`

B

`60^(@)`

C

`30^(@)`

D

`45^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find angle A in triangle ABC where \( a = 2 \), \( b = 1 \), and \( c = \sqrt{3} \), we can use the cosine rule. The cosine rule states that: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] ### Step 1: Substitute the values into the cosine formula. Given: - \( a = 2 \) - \( b = 1 \) - \( c = \sqrt{3} \) We substitute these values into the formula: \[ \cos A = \frac{1^2 + (\sqrt{3})^2 - 2^2}{2 \cdot 1 \cdot \sqrt{3}} \] ### Step 2: Calculate the squares. Calculating the squares: - \( 1^2 = 1 \) - \( (\sqrt{3})^2 = 3 \) - \( 2^2 = 4 \) Now substitute these values back into the equation: \[ \cos A = \frac{1 + 3 - 4}{2 \cdot 1 \cdot \sqrt{3}} \] ### Step 3: Simplify the numerator. Now simplify the numerator: \[ \cos A = \frac{0}{2 \cdot \sqrt{3}} = 0 \] ### Step 4: Determine angle A. Since \( \cos A = 0 \), we find angle A: \[ A = \cos^{-1}(0) \] The angle whose cosine is 0 is \( 90^\circ \) (or \( \frac{\pi}{2} \) radians). ### Final Answer: Thus, angle A is \( 90^\circ \). ---
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

In triangleABC, if a=2, b=1, c=sqrt(3) , then angleB=

In triangleABC, if a=2, b=1, c=sqrt(3) , then angleC=

In triangleABC , if a=18, b=24, c=30 , then A(triangleABC)

In triangleABC , if a=13, b=14, c=15 , then A(triangleABC)=

In triangleABC , if a=3, b=4, c=5, then sin2B=

In triangleABC , if a=sqrt(3)+1, b=sqrt(3)-1 and angleC=60^(@) , then angleA =

In triangleABC , if a=sqrt(3)+1, b=sqrt(3)-1 and angleC=60^(@) , then c=

In triangleABC , if a=sqrt(3)+1, b=sqrt(3)-1 and angleC=60^(@) , then angleB =

If, in triangleABC, a= sqrt(2), b= sqrt(3), c = sqrt(5) , then the area of triangleABC is

In triangleABC , If a=sqrt(3)+1, b=sqrt(3)+1, angleC=60^(@) , then the triangle is