Home
Class 12
MATHS
In a triangle ABC, the side a,b,c are su...

In a triangle ABC, the side a,b,c are such that they are the roots of then `(cosA)/a+(cosB)/b+(cosC)/c=`

A

`(a^(2)+b^(2)-c^(2))/(4)`

B

`(a^(2)+b^(2)-c^(2))/(2)`

C

`(a^(2)+b^(2)+c^(2))/(2abc)`

D

`(a^(2)+b^(2)+c^(2))/(abc)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, if a=2,b=4,c=5 then cosB=

In a triangle ABC, if a=2,b=4,c=5 then cosA=

Which of the following holds goods for any tiangle ABC, a,b,c are the lengths of the sides R is circumradius (A) (cosA)/a+(cosB)/b+(cosC)/c= (a^2+b^2+c^2)/(2abc) (B) (sinA)/a+(sinB)/b+(sinC)/c=3/(2R0 (C) (cosA)/a=(cosB)/b=(cosC)/c (D) (sin2A)/a62=(sin2B)/b^2=(sin2C)/c^2

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c

In a DeltaABC , if the sides a, b, c are the roots of the equation x^(3)-11x^(2)+38x-40=0 , then (cosA)/a+(cosB)/b+(cosC)/c=

In triangle ABC , if a=3, b=4, and c=5, then find the value of cosA.

In any triangle ABC, sinA -cosB=cosC , then angle B is

If p_1,p_2,p_3 re the altitudes of the triangle ABC from the vertices A, B and C respectivel. Prove that (cosA)/p_1+(cosB)/p^2+(cosC)/p_3 =1/R