Home
Class 12
MATHS
In triangleABC, if a=18, b=24, c=30, the...

In `triangleABC`, if `a=18, b=24, c=30`, then `cos((A)/(2))=`

A

`(4)/(sqrt(10))`

B

`(3)/(sqrt(10))`

C

`(2)/(sqrt(10))`

D

`(1)/(sqrt(10))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \cos\left(\frac{A}{2}\right) \) in triangle \( ABC \) where \( a = 18 \), \( b = 24 \), and \( c = 30 \), we can follow these steps: ### Step 1: Calculate the semi-perimeter \( s \) The semi-perimeter \( s \) of triangle \( ABC \) is given by the formula: \[ s = \frac{a + b + c}{2} \] Substituting the values of \( a \), \( b \), and \( c \): \[ s = \frac{18 + 24 + 30}{2} = \frac{72}{2} = 36 \] ### Step 2: Use the formula for \( \cos\left(\frac{A}{2}\right) \) The formula for \( \cos\left(\frac{A}{2}\right) \) is: \[ \cos\left(\frac{A}{2}\right) = \sqrt{\frac{s(s - a)}{bc}} \] ### Step 3: Substitute the values into the formula Now we substitute \( s = 36 \), \( a = 18 \), \( b = 24 \), and \( c = 30 \): \[ \cos\left(\frac{A}{2}\right) = \sqrt{\frac{36(36 - 18)}{24 \cdot 30}} \] ### Step 4: Simplify the expression First, calculate \( s - a \): \[ s - a = 36 - 18 = 18 \] Now substitute this back into the equation: \[ \cos\left(\frac{A}{2}\right) = \sqrt{\frac{36 \cdot 18}{24 \cdot 30}} \] ### Step 5: Calculate the denominator Calculate \( 24 \cdot 30 \): \[ 24 \cdot 30 = 720 \] ### Step 6: Calculate the numerator Calculate \( 36 \cdot 18 \): \[ 36 \cdot 18 = 648 \] ### Step 7: Substitute back into the equation Now we have: \[ \cos\left(\frac{A}{2}\right) = \sqrt{\frac{648}{720}} \] ### Step 8: Simplify the fraction To simplify \( \frac{648}{720} \), we can divide both the numerator and the denominator by their greatest common divisor (GCD), which is 72: \[ \frac{648 \div 72}{720 \div 72} = \frac{9}{10} \] ### Step 9: Take the square root Now we take the square root: \[ \cos\left(\frac{A}{2}\right) = \sqrt{\frac{9}{10}} = \frac{3}{\sqrt{10}} \] ### Final Answer Thus, the value of \( \cos\left(\frac{A}{2}\right) \) is: \[ \cos\left(\frac{A}{2}\right) = \frac{3}{\sqrt{10}} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

In triangleABC , if a=18, b=24, c=30 , then tanA=

In triangleABC , if a=18, b=24, c=30 , then tan((A)/(2))=

In triangleABC , if a=13, b=14, c=15 , then cos((A)/(2))=

In triangleABC , if a=4, b=5, c=7 , then cos((A)/(2))=

In triangleABC , if a=3, b=4, c=5, then sin2B=

In triangleABC , if a=18, b=24, c=30 , then A(triangleABC)

If, in triangleABC , a=18, b=24, c=30, then: sin A=……..

In triangle ABC, ifa =18,b=24 and c=30 then find (i)cos A,cos B,cos C(ii)sin A,sin B,sin C

In triangleABC , if a=13, b=14, c=15 , then A(triangleABC)=