Home
Class 12
MATHS
In triangleABC, tan((A)/(2))tan((B)/(2))...

In `triangleABC, tan((A)/(2))tan((B)/(2))=`

A

`(c-(a+b))/(2(a+b+c))`

B

`(c-(a+b))/(a+b+c)`

C

`(a+b-c)/(2(a+b+c))`

D

`(a+b-c)/(a+b+c)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( \tan\left(\frac{A}{2}\right) \tan\left(\frac{B}{2}\right) \) in triangle \( ABC \). ### Step-by-Step Solution: 1. **Use the Half-Angle Formula for Tangent**: The half-angle formulas for the tangent of angles \( A \) and \( B \) in triangle \( ABC \) are given by: \[ \tan\left(\frac{A}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \] \[ \tan\left(\frac{B}{2}\right) = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \] where \( s \) is the semi-perimeter of the triangle, defined as: \[ s = \frac{a + b + c}{2} \] 2. **Multiply the Two Expressions**: Now, we multiply \( \tan\left(\frac{A}{2}\right) \) and \( \tan\left(\frac{B}{2}\right) \): \[ \tan\left(\frac{A}{2}\right) \tan\left(\frac{B}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \cdot \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \] 3. **Combine the Square Roots**: Combining the square roots gives: \[ \tan\left(\frac{A}{2}\right) \tan\left(\frac{B}{2}\right) = \sqrt{\frac{(s-b)(s-c)(s-a)(s-c)}{s^2(s-a)(s-b)}} \] 4. **Simplify the Expression**: Notice that \( (s-c) \) appears in both the numerator and the denominator: \[ = \sqrt{\frac{(s-c)(s-b)}{s^2}} \] 5. **Final Simplification**: Thus, we can simplify further: \[ = \frac{\sqrt{s-c}}{s} \] 6. **Expressing in Terms of Semi-Perimeter**: Recall that \( s = \frac{a + b + c}{2} \) and \( s - c = \frac{a + b - c}{2} \): \[ \tan\left(\frac{A}{2}\right) \tan\left(\frac{B}{2}\right) = \frac{\sqrt{\frac{a + b - c}{2}}}{\frac{a + b + c}{2}} = \frac{a + b - c}{a + b + c} \] ### Final Answer: \[ \tan\left(\frac{A}{2}\right) \tan\left(\frac{B}{2}\right) = \frac{a + b - c}{a + b + c} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

* In a Delta ABC,If tan((A)/(2)),tan((B)/(2)),tan((C)/(2)) are in H.P.then a,b,c are in ,tan((C)/(2))

In Delta ABC if tan((A)/(2))tan((B)/(2))+tan((B)/(2))tan((C)/(2))=(2)/(3) then a+c

Knowledge Check

  • In triangleABC, (tan((B)/(2))-tan((C)/(2)))/ (tan((B)/(2))+tan((C)/(2)))=

    A
    `(b-c)/(2a)`
    B
    `(c-d)/(2a)`
    C
    `(b-c)/(a)`
    D
    `(c-b)/(a)`
  • In triangleABC, s(s-a)tan((A)/(2))=

    A
    `(A(triangleABC))/(2)`
    B
    `(2A(triangleABC))/(4)`
    C
    `A(triangleABC)`
    D
    `2A(triangleABC)`
  • In triangleABC, (b+c-a)tan((A)/(2))=

    A
    `(A(triangleABC))/(s)`
    B
    `(2A(triangleABC))/(s)`
    C
    `A(triangleABC)`
    D
    `2A(triangleABC)`
  • Similar Questions

    Explore conceptually related problems

    In triangleABC, s(s-b)tan((B)/(2))=

    In triangleABC, s(s-c)tan((C)/(2))=

    In triangleABC, (c+a-b)tan((B)/(2))=

    In triangleABC, (a+b-c)tan((C)/(2))=

    In DeltaABC,tan.(A)/(2)+tan.(B)/(2) =