Home
Class 12
MATHS
sin^(-1)((1)/(sqrt(2)))-3sin^(-1)((sqrt(...

`sin^(-1)((1)/(sqrt(2)))-3sin^(-1)((sqrt(3))/(2))=`

A

`(-pi)/(12)`

B

`(5pi)/(4)`

C

`(3pi)/(4)`

D

`(-3pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) - 3\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \), we will follow these steps: ### Step 1: Calculate \( \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) \) The value of \( \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) \) corresponds to the angle whose sine is \( \frac{1}{\sqrt{2}} \). We know that: \[ \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Thus, \[ \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4} \] ### Step 2: Calculate \( \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \) Next, we find \( \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \). This corresponds to the angle whose sine is \( \frac{\sqrt{3}}{2} \). We know that: \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Thus, \[ \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \] ### Step 3: Substitute the values into the expression Now we substitute the values we found into the original expression: \[ \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) - 3\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{4} - 3\left(\frac{\pi}{3}\right) \] ### Step 4: Simplify the expression Now we simplify the expression: \[ = \frac{\pi}{4} - \frac{3\pi}{3} \] \[ = \frac{\pi}{4} - \pi \] To combine these, we convert \( \pi \) to have a common denominator: \[ = \frac{\pi}{4} - \frac{4\pi}{4} = \frac{\pi - 4\pi}{4} = \frac{-3\pi}{4} \] ### Final Answer Thus, the final result is: \[ \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) - 3\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = -\frac{3\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

The sum of the infinte series sin^(-1)((1)/(sqrt(2)))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+...sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((sqrt(3))/(2))

sin^(-1)((sqrt(3))/(2))+2cos^(-1)((sqrt(3))/(2))

sin^(-1)((sqrt(3))/(2))-tan^(-1)(-sqrt(3))

If alpha=sin(sin^(-1)( 1/sqrt3)/(3)),beta=cos(cos^(-1)((1)/(sqrt(5)))-sin^(-1)((2)/(sqrt(5)))) then (beta^(2))/((3 alpha-4a^(3))^(2)) is

The sum of the infinite series "sin"^(-1)((1)/(sqrt2))+"sin"^(-1)((sqrt2-1)/(sqrt6))+"sin"^(-1)((sqrt3-sqrt2)/(sqrt12))+…+…+"sin"^(-1)((sqrtn-sqrt((n-1)))/(sqrt(n(n+1))))+… is

For the principal values,evaluate each of the following: sin^(-1)(-(1)/(2))+2cos^(-1)(-(sqrt(3))/(2))( ii) sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((sqrt(3))/(2))

Find the value of : tan^(-1) ((-1)/(sqrt(3)))+cos^(-1)((-sqrt(3))/2)+sin^(-1)(1/2)

If alpha,beta and gamma are the three angles with alpha=2tan^(-1)(sqrt(2)-1);beta=3sin^(-1)((1)/(sqrt(2)))+sin^(-1)(-(1)/(2)) and gamma=cos^(-1)((1)/(3)), then

If alpha,beta and gamma are the three angles with alpha=2tan^(-1)(sqrt(2)-1);beta=3sin^(-1)((1)/(sqrt(2)))+sin^(-1)(-(1)/(2)) and gamma=cos^(-1)((1)/(3)), then

NIKITA PUBLICATION-TRIGONOMETRIC FUNCTIONS-MCQs
  1. The value of cos^(-1)(cos(5pi)/3)+sin^(-1)(sin(5pi)/3) is pi/2 (b) (5p...

    Text Solution

    |

  2. cos^-1 (1/2) + 2 sin^-1 (1/2).

    Text Solution

    |

  3. sin^(-1)((1)/(sqrt(2)))-3sin^(-1)((sqrt(3))/(2))=

    Text Solution

    |

  4. cosec^(-1)(-sqrt(2))+cot^(-1)(sqrt(3))=

    Text Solution

    |

  5. tan^-1 sqrt3-sec^-1(-2)=pi/3

    Text Solution

    |

  6. tan^(-1)(1)+cos^(-1)((1)/(2))+sin^(-1)((1)/(2))=

    Text Solution

    |

  7. cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

    Text Solution

    |

  8. cos^(-1)((3)/(5))+cos^(-1)((4)/(5))=

    Text Solution

    |

  9. The value of sin^(-1)((2sqrt(2))/(3))+sin^(-1)((1)/(3)) is

    Text Solution

    |

  10. The value of sin(sin^(-1)1/2+cos^(-1)1/2)=?

    Text Solution

    |

  11. (tan^(- 1)(sqrt(3))-sec^(- 1)(-2))/(cosec^(- 1)(-sqrt(2))+cos^(- 1)(-1...

    Text Solution

    |

  12. Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

    Text Solution

    |

  13. निम्नलिखित फलनों को सरलतम रूप में लिखिए : tan^(-1)""((cos x-sinx)/(c...

    Text Solution

    |

  14. Show that tan^(-1)[(cosx+sinx)/(cosx-sinx)]=(pi)/(4)+x.

    Text Solution

    |

  15. tan^(-1)""[(a cos x -b sinx)/(b cosx+a sinx)] को सरल कीजिए, यदि ""(a)...

    Text Solution

    |

  16. Differentiate w.r.t. x: (i)tan^(-1){sqrt((1+cosx)/(1-cosx))}" "(...

    Text Solution

    |

  17. If tan^(-1) y = tan^(-1) x + tan^(-1)((2x)/(1 -x^(2)))", where" |x| lt...

    Text Solution

    |

  18. If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

    Text Solution

    |

  19. If x takes negative permissible vlaue then sin^(-1)x=

    Text Solution

    |

  20. Differentiate each of the following functions with respect to x : si...

    Text Solution

    |