Home
Class 12
MATHS
If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A...

If `tan^(-1)x-tan^(-1)y=tan^(-1)A,` then A=

A

`(x-y)/(1+xy)`

B

`(x+y)/(1-xy)`

C

`x-y`

D

`x+y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} x - \tan^{-1} y = \tan^{-1} A \), we can use the formula for the difference of inverse tangents: \[ \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left( \frac{x - y}{1 + xy} \right) \] Given that \( \tan^{-1} x - \tan^{-1} y = \tan^{-1} A \), we can equate: \[ \tan^{-1} \left( \frac{x - y}{1 + xy} \right) = \tan^{-1} A \] Since the inverse tangent function is one-to-one, we can set the arguments equal to each other: \[ \frac{x - y}{1 + xy} = A \] Thus, we can express \( A \) as: \[ A = \frac{x - y}{1 + xy} \] Now, we can rewrite this equation to find a relationship between \( x \), \( y \), and \( A \). To find \( A \) in terms of \( x \) and \( y \), we can rearrange the equation: \[ A(1 + xy) = x - y \] This gives us: \[ x - y = A + Axy \] Now, we can analyze the options provided in the question. 1. \( x - y = 1 + xy \) 2. \( x + y = 1 - xy \) 3. \( x - y \) 4. \( x + y \) From our derived equation, we see that if we set \( A = 1 \), we get: \[ x - y = 1 + xy \] Thus, the correct answer is: \[ A = x - y = 1 + xy \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=0 then the value of (1)/(xy)+(1)/(yz)+(1)/(zx)is(x,y,z!=0)

If tan^(-1) 3 +tan^(-1)x=tan^(-1)8 then x =

If tan^(-1)x,tan^(-1)y,tan^(-1)z are in A.P the (2y)/(1-y^(2))=

If tan^(-1)3+ tan^(-1)x = tan^(-1)8 , then: x=

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x+y+z=xyz , then

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if xy+yz+zx=1 , then

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x^2 + y^2+z^2 = 1, & \ x+y+z=sqrt(3) , then

NIKITA PUBLICATION-TRIGONOMETRIC FUNCTIONS-MCQs
  1. Differentiate w.r.t. x: (i)tan^(-1){sqrt((1+cosx)/(1-cosx))}" "(...

    Text Solution

    |

  2. If tan^(-1) y = tan^(-1) x + tan^(-1)((2x)/(1 -x^(2)))", where" |x| lt...

    Text Solution

    |

  3. If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

    Text Solution

    |

  4. If x takes negative permissible vlaue then sin^(-1)x=

    Text Solution

    |

  5. Differentiate each of the following functions with respect to x : si...

    Text Solution

    |

  6. If x in[0, 1], then (1)/(2)cos^(-1)((1-x)/(1+x))=

    Text Solution

    |

  7. Prove that : tan1/2{sin^(-1)(2x)/(1+x^2)+cos^(-1)(1-y^2)/(1+y^2)}=(x+y...

    Text Solution

    |

  8. Solve y=tan^(-1)((sqrt(1+x^2)-1)/x)

    Text Solution

    |

  9. tan^(- 1)((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))

    Text Solution

    |

  10. If x in (0, 1), then find the value of tan^(-1) ((1 -x^(2))/(2x)) + co...

    Text Solution

    |

  11. Simplify sin(cot^(-1)(cos(tan^(-1)x))),0 ltxlt1.

    Text Solution

    |

  12. If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)...

    Text Solution

    |

  13. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  14. If sin^(-1)(x/5) + cosec^(-1) (5/4) = pi/2 , then the value of x is

    Text Solution

    |

  15. If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    Text Solution

    |

  16. If 4sin^(-1)x+cos^(-1)x=pi, then x is equal to

    Text Solution

    |

  17. If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=

    Text Solution

    |

  18. For 0le|x|lesqrt(2), if cos^(-1)(x^(2)-(x^(4))/(2)+(x^(6))/(4)-…)+sin^...

    Text Solution

    |

  19. If cos(2sin^(-1)x)=1/9, then find the values of xdot

    Text Solution

    |

  20. IF tan ^(-1) 2x + tan ^(-1) 3x =(pi)/(4) , then x=

    Text Solution

    |