Home
Class 12
MATHS
If 2tan^(-1)(cosx)=tan^(-1)(2cosecx), th...

If `2tan^(-1)(cosx)=tan^(-1)(2cosecx)`, then x=

A

`(pi)/(4)`

B

`(-pi)/(4)`

C

`(pi)/(3)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x) \), we can follow these steps: ### Step 1: Use the double angle formula for inverse tangent We know that: \[ 2\tan^{-1}(y) = \tan^{-1}\left(\frac{2y}{1-y^2}\right) \] Applying this to our equation, we set \( y = \cos x \): \[ 2\tan^{-1}(\cos x) = \tan^{-1}\left(\frac{2\cos x}{1 - \cos^2 x}\right) \] Since \( 1 - \cos^2 x = \sin^2 x \), we can rewrite it as: \[ \tan^{-1}\left(\frac{2\cos x}{\sin^2 x}\right) \] ### Step 2: Set the two sides equal Now we have: \[ \tan^{-1}\left(\frac{2\cos x}{\sin^2 x}\right) = \tan^{-1}(2\csc x) \] Since both sides are equal, we can equate the arguments: \[ \frac{2\cos x}{\sin^2 x} = 2\csc x \] ### Step 3: Rewrite \( \csc x \) Recall that \( \csc x = \frac{1}{\sin x} \), so we can rewrite the right side: \[ \frac{2\cos x}{\sin^2 x} = \frac{2}{\sin x} \] ### Step 4: Cross-multiply Cross-multiplying gives: \[ 2\cos x \cdot \sin x = 2\sin^2 x \] ### Step 5: Simplify the equation We can simplify this to: \[ \cos x \cdot \sin x = \sin^2 x \] Dividing both sides by \( \sin x \) (assuming \( \sin x \neq 0 \)): \[ \cos x = \sin x \] ### Step 6: Solve for \( x \) The equation \( \cos x = \sin x \) implies: \[ \tan x = 1 \] Thus, the general solution for this is: \[ x = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] For the principal value, we have: \[ x = \frac{\pi}{4} \] ### Conclusion The solution to the equation \( 2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x) \) is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

If 2tan^(-1)(cosx)=tan^(-1)(2cosecx) , then sinx +cosx is equal to

Solve the equation 2 tan ^(-1)(cosx)=tan^(-1)(2cosec x) .

2tan ^ (- 1) (cos x) = tan ^ (- 1) (2cos ecx)

(d)/(dx)[tan^(-1)(cosecx+cotx)]=

2tan(tan^(-1)(x)+tan^(-1)(x^(3))), where x in R-{-1,1} is equal to (2x)/(1-x^(2))t(2tan^(-1)x)tan(cot^(-1)(-x)-cot^(-1)(x))tan(2cot^(-1)x)

tan^(-1)((cosx+sinx)/(cos x-sinx))

tan^(-1)((1+sinx)/cosx)=

tan^-1(cosx/(1-sinx))