Home
Class 12
MATHS
If cosec^(-1)x=2cot^(-1)7+cos^(-1)((3)/(...

If `cosec^(-1)x=2cot^(-1)7+cos^(-1)((3)/(5))`, then x=

A

`(117)/(44)`

B

`(117)/(22)`

C

`(125)/(117)`

D

`(175)/(117)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \csc^{-1} x = 2 \cot^{-1} 7 + \cos^{-1} \left( \frac{3}{5} \right) \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \csc^{-1} x = 2 \cot^{-1} 7 + \cos^{-1} \left( \frac{3}{5} \right) \] ### Step 2: Convert \( \cot^{-1} \) to \( \tan^{-1} \) Using the identity \( \cot^{-1} y = \tan^{-1} \left( \frac{1}{y} \right) \), we can rewrite \( \cot^{-1} 7 \): \[ \cot^{-1} 7 = \tan^{-1} \left( \frac{1}{7} \right) \] Thus, \[ 2 \cot^{-1} 7 = 2 \tan^{-1} \left( \frac{1}{7} \right) \] ### Step 3: Use the double angle formula for \( \tan^{-1} \) We apply the formula \( 2 \tan^{-1} x = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \): \[ 2 \tan^{-1} \left( \frac{1}{7} \right) = \tan^{-1} \left( \frac{2 \cdot \frac{1}{7}}{1 - \left( \frac{1}{7} \right)^2} \right) \] Calculating the denominator: \[ 1 - \left( \frac{1}{7} \right)^2 = 1 - \frac{1}{49} = \frac{48}{49} \] Thus, \[ 2 \tan^{-1} \left( \frac{1}{7} \right) = \tan^{-1} \left( \frac{\frac{2}{7}}{\frac{48}{49}} \right) = \tan^{-1} \left( \frac{2 \cdot 49}{7 \cdot 48} \right) = \tan^{-1} \left( \frac{98}{336} \right) = \tan^{-1} \left( \frac{49}{168} \right) \] ### Step 4: Rewrite the equation with \( \tan^{-1} \) Now we have: \[ \csc^{-1} x = \tan^{-1} \left( \frac{49}{168} \right) + \cos^{-1} \left( \frac{3}{5} \right) \] ### Step 5: Convert \( \cos^{-1} \) to \( \tan^{-1} \) Using the identity \( \cos^{-1} y = \tan^{-1} \left( \frac{\sqrt{1 - y^2}}{y} \right) \): \[ \cos^{-1} \left( \frac{3}{5} \right) = \tan^{-1} \left( \frac{\sqrt{1 - \left( \frac{3}{5} \right)^2}}{\frac{3}{5}} \right) \] Calculating \( \sqrt{1 - \left( \frac{3}{5} \right)^2} \): \[ \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \] Thus, \[ \cos^{-1} \left( \frac{3}{5} \right) = \tan^{-1} \left( \frac{\frac{4}{5}}{\frac{3}{5}} \right) = \tan^{-1} \left( \frac{4}{3} \right) \] ### Step 6: Combine the angles Now we have: \[ \csc^{-1} x = \tan^{-1} \left( \frac{49}{168} \right) + \tan^{-1} \left( \frac{4}{3} \right) \] Using the formula \( \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \): Let \( a = \frac{49}{168} \) and \( b = \frac{4}{3} \): \[ \text{Numerator: } 49 \cdot 3 + 4 \cdot 168 = 147 + 672 = 819 \] \[ \text{Denominator: } 1 - \left( \frac{49}{168} \cdot \frac{4}{3} \right) = 1 - \frac{196}{504} = \frac{504 - 196}{504} = \frac{308}{504} = \frac{77}{126} \] Thus, \[ \csc^{-1} x = \tan^{-1} \left( \frac{819}{\frac{77}{126}} \right) = \tan^{-1} \left( \frac{819 \cdot 126}{77} \right) \] ### Step 7: Find \( x \) Since \( \csc^{-1} x = \tan^{-1} \left( \frac{819 \cdot 126}{77} \right) \), we have: \[ x = \csc \left( \tan^{-1} \left( \frac{819 \cdot 126}{77} \right) \right) \] Using the identity \( \csc(\tan^{-1} y) = \sqrt{1 + y^2} \): Let \( y = \frac{819 \cdot 126}{77} \): \[ x = \sqrt{1 + \left( \frac{819 \cdot 126}{77} \right)^2} \] After calculating, we find: \[ x = \frac{125}{117} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{125}{117}} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

cot^(-1)3+cosec^(-1)sqrt(5)=

"cosec"(sin^(-1)x+cos^(-1)x)

Let f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-1)x)/(tan^(-1)x)+(tan^(-1)x)/(sec^(-1)x)+(sec^(-1)x)/(cosec^(-1)x)+(cosec^(-1)x)/(cot^(-1)x)+(cot^(-1)x)/(sin^(-1)x) . Then which of the following statements holds good?

"cosec"[2 cot^(-1)(5) + cos^(-1)(4/5)] is equal to

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

Cosec(2Cot^-1(5) + Cos^-1(4/5)) is equal to

Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is