Home
Class 12
MATHS
2tan^(-1)((1)/(3))=...

`2tan^(-1)((1)/(3))=`

A

`-tan^(-1)((4)/(3))`

B

`-tan^(-1)((3)/(4))`

C

`tan^(-1)((4)/(3))`

D

`tan^(-1)((3)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\tan^{-1}\left(\frac{1}{3}\right) \), we will use the formula for the double angle of the tangent function: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] ### Step 1: Let \( y = \tan^{-1}\left(\frac{1}{3}\right) \) This means that \( \tan(y) = \frac{1}{3} \). ### Step 2: Apply the double angle formula Using the double angle formula for tangent, we have: \[ \tan(2y) = \frac{2\tan(y)}{1 - \tan^2(y)} \] ### Step 3: Substitute \( \tan(y) \) Substituting \( \tan(y) = \frac{1}{3} \) into the formula: \[ \tan(2y) = \frac{2 \cdot \frac{1}{3}}{1 - \left(\frac{1}{3}\right)^2} \] ### Step 4: Calculate \( \tan(2y) \) First, calculate \( \left(\frac{1}{3}\right)^2 = \frac{1}{9} \). Now substitute this value into the equation: \[ \tan(2y) = \frac{\frac{2}{3}}{1 - \frac{1}{9}} = \frac{\frac{2}{3}}{\frac{8}{9}} \] ### Step 5: Simplify the fraction To simplify \( \frac{\frac{2}{3}}{\frac{8}{9}} \): \[ \tan(2y) = \frac{2}{3} \cdot \frac{9}{8} = \frac{2 \cdot 9}{3 \cdot 8} = \frac{18}{24} = \frac{3}{4} \] ### Step 6: Find \( 2y \) Now, we have: \[ \tan(2y) = \frac{3}{4} \] Thus, we can write: \[ 2y = \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 7: Conclusion Therefore, we conclude that: \[ 2\tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{3}{4}\right) \] So, the final answer is: \[ \boxed{\tan^{-1}\left(\frac{3}{4}\right)} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=

tan(tan^(-1)((1)/(2))-tan^(-1)((1)/(3)))=

Prove that 3tan^(-1)((1)/(2+sqrt(3)))-tan^(-1)((1)/(2))=tan^(-1)((1)/(3))

tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)|0tan(1)+tan(1)

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)

Prove that tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)

What is tan^(-1)((1)/(2))+tan^(-1)((1)/(3)) equal to ?

What is tan^(-1)((1)/(2))+tan^(-1)((1)/(3)) equal to?

general solution of sec theta=(tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3))/(tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))) is theta=

general solution of sec theta=(tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3))/(tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))) is theta=