Home
Class 12
MATHS
Prove that: 2tan^(-1)1/2+tan^(-1)1/7=tan...

Prove that: `2tan^(-1)1/2+tan^(-1)1/7=tan^(-1)(31)/(17)`

A

`tan^(-1)((31)/(17))`

B

`tan^(-1)((25)/(21))`

C

`tan^(-1)((17)/(3))`

D

`tan^(-1)((21)/(25))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

Show that 2 tan^(-1)(1/2)+tan^(-1) (1/7)=tan^(-1)(31/17)

Prove that : tan^(-1)1/7+tan^(-1)1/(13)=tan^(-1)2/9

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that : tan^(-1)1/5+tan^(-1)1/7+tan^(-1)1/3+tan^(-1)1/8=pi/4

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

Prove that 2(tan^(-1)1/4+tan^(-1)2/9)=tan^(-1)4/3 .

Prove that: tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

Prove that : tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)