Home
Class 12
MATHS
2tan^(-1)((1)/(3))+tan^(-1)((1)/(2))=...

`2tan^(-1)((1)/(3))+tan^(-1)((1)/(2))=`

A

`(pi)/(2)`

B

`(pi)/(3)`

C

`(pi)/(4)`

D

`tan^(-1)2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right) \), we will use the formula for the tangent of a sum of angles and the double angle formula for the inverse tangent function. ### Step-by-Step Solution: 1. **Use the Double Angle Formula for Inverse Tangent:** The double angle formula for inverse tangent is given by: \[ 2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1 - x^2}\right) \] Here, let \( x = \frac{1}{3} \). Therefore, \[ 2\tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{3}}{1 - \left(\frac{1}{3}\right)^2}\right) \] 2. **Calculate the Expression Inside the Inverse Tangent:** First, calculate \( 1 - \left(\frac{1}{3}\right)^2 \): \[ 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{9}{9} - \frac{1}{9} = \frac{8}{9} \] Now substitute this back into the formula: \[ 2\tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{2}{3}}{\frac{8}{9}}\right) = \tan^{-1}\left(\frac{2}{3} \cdot \frac{9}{8}\right) = \tan^{-1}\left(\frac{18}{24}\right) = \tan^{-1}\left(\frac{3}{4}\right) \] 3. **Combine with the Other Inverse Tangent:** Now we have: \[ 2\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{2}\right) \] We will use the formula for the sum of two inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] Here, \( a = \frac{3}{4} \) and \( b = \frac{1}{2} \). 4. **Calculate the Sum:** First, calculate \( ab \): \[ ab = \frac{3}{4} \cdot \frac{1}{2} = \frac{3}{8} \] Now substitute into the formula: \[ \tan^{-1}\left(\frac{\frac{3}{4} + \frac{1}{2}}{1 - \frac{3}{8}}\right) \] Calculate \( \frac{3}{4} + \frac{1}{2} \): \[ \frac{3}{4} + \frac{1}{2} = \frac{3}{4} + \frac{2}{4} = \frac{5}{4} \] Calculate \( 1 - \frac{3}{8} \): \[ 1 - \frac{3}{8} = \frac{8}{8} - \frac{3}{8} = \frac{5}{8} \] Now substitute these values back into the formula: \[ \tan^{-1}\left(\frac{\frac{5}{4}}{\frac{5}{8}}\right) = \tan^{-1}\left(\frac{5}{4} \cdot \frac{8}{5}\right) = \tan^{-1}(2) \] 5. **Final Result:** Therefore, we have: \[ 2\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}(2) \] ### Conclusion: The final answer is: \[ \tan^{-1}(2) \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=

cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

2Tan^(-1)(1)/(3)+tan^(-1)((1)/(7))=

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

tan(tan^(-1)((1)/(2))-tan^(-1)((1)/(3)))=

tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)|0tan(1)+tan(1)

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)

"tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(3^(3))) + ....oo is equal to

2tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+2tan^(-1)((1)/(8))=

Prove that 2tan^(-1)((1)/(2))=tan^(-1)((4)/(3))