Home
Class 12
MATHS
tan^(-1)((1)/(2))+tan^(-1)((2)/(11))=...

`tan^(-1)((1)/(2))+tan^(-1)((2)/(11))=`

A

`tan^(-1)((4)/(3))`

B

`tan^(-1)((3)/(4))`

C

`pi+tan^(-1)((4)/(3))`

D

`pi+tan^(-1)((3)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{11}\right) \), we will use the formula for the sum of inverse tangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \quad \text{if } xy < 1 \] ### Step 1: Identify \( x \) and \( y \) Let: - \( x = \frac{1}{2} \) - \( y = \frac{2}{11} \) ### Step 2: Calculate \( xy \) Now, we need to check if \( xy < 1 \): \[ xy = \left(\frac{1}{2}\right) \left(\frac{2}{11}\right) = \frac{2}{22} = \frac{1}{11} \] Since \( \frac{1}{11} < 1 \), we can use the formula. ### Step 3: Apply the formula Now, we can apply the formula: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{11}\right) = \tan^{-1}\left(\frac{\frac{1}{2} + \frac{2}{11}}{1 - \frac{1}{11}}\right) \] ### Step 4: Simplify the numerator Calculate the numerator: \[ \frac{1}{2} + \frac{2}{11} = \frac{11}{22} + \frac{4}{22} = \frac{15}{22} \] ### Step 5: Simplify the denominator Calculate the denominator: \[ 1 - \frac{1}{11} = \frac{11}{11} - \frac{1}{11} = \frac{10}{11} \] ### Step 6: Combine the results Now, we substitute back into the formula: \[ \tan^{-1}\left(\frac{\frac{15}{22}}{\frac{10}{11}}\right) = \tan^{-1}\left(\frac{15}{22} \cdot \frac{11}{10}\right) = \tan^{-1}\left(\frac{15 \cdot 11}{22 \cdot 10}\right) = \tan^{-1}\left(\frac{165}{220}\right) = \tan^{-1}\left(\frac{3}{4}\right) \] ### Final Result Thus, we have: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{11}\right) = \tan^{-1}\left(\frac{3}{4}\right) \] ### Conclusion The answer is \( \tan^{-1}\left(\frac{3}{4}\right) \).
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

tan(tan^(-1)((1)/(2))-tan^(-1)((1)/(3)))=

2tan^(-1)((1)/(3))+tan^(-1)((1)/(2))=

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

Find the sum of the series tan^(-1)((1)/(2))+tan^(-1)((1)/(2))+tan^(-1)((1)/(18))+tan^(-1)((1)/(32))+

tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)|0tan(1)+tan(1)

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)

tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=tan^(-1)((1)/(2))

general solution of sec theta=(tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3))/(tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))) is theta=

general solution of sec theta=(tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3))/(tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))) is theta=

2tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+2tan^(-1)((1)/(8))=