Home
Class 12
MATHS
tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=...

`tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=`

A

`0`

B

`(pi)/(6)`

C

`(pi)/(4)`

D

`(-pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) \), we will use the formula for the sum of two inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] provided that \( ab < 1 \). ### Step 1: Identify \( a \) and \( b \) Let \( a = \frac{1}{2} \) and \( b = \frac{1}{3} \). ### Step 2: Check the condition \( ab < 1 \) Calculate \( ab \): \[ ab = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6} \] Since \( \frac{1}{6} < 1 \), we can use the formula. ### Step 3: Apply the formula Now, substitute \( a \) and \( b \) into the formula: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}}\right) \] ### Step 4: Simplify the numerator Calculate the numerator: \[ \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6} \] ### Step 5: Simplify the denominator Calculate the denominator: \[ 1 - \frac{1}{6} = \frac{6}{6} - \frac{1}{6} = \frac{5}{6} \] ### Step 6: Combine the results Now, substitute back into the formula: \[ \tan^{-1}\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right) = \tan^{-1}(1) \] ### Step 7: Find the final result We know that: \[ \tan^{-1}(1) = \frac{\pi}{4} \] Thus, the final answer is: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4} \] ### Final Answer: \[ \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

2tan^(-1)((1)/(3))+tan^(-1)((1)/(2))=

Prove that 2tan^(-1)((1)/(2))=tan^(-1)((4)/(3))

tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=

cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

2Tan^(-1)(1)/(3)+tan^(-1)((1)/(7))=

Two angles of a triangle are "tan"^(-1)(1)/(2)and "tan"^(-1)(1)/(3) . What is the third angle ?

"tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(3^(3))) + ....oo is equal to

tan^(-1)2-tan^(-1)1=tan^(-1)((1)/(3))

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to