Home
Class 12
MATHS
cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))...

`cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=`

A

`(-1)/(sqrt(2))`

B

`(1)/(sqrt(2))`

C

`(1)/(2)`

D

`(-1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos\left(\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right)\right) \), we can use the formula for the sum of two inverse tangents. Here are the steps: ### Step 1: Define the variables Let: - \( a = \tan^{-1}\left(\frac{1}{3}\right) \) - \( b = \tan^{-1}\left(\frac{1}{2}\right) \) ### Step 2: Use the formula for the sum of inverse tangents The formula for the sum of two inverse tangents is: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] provided that \( xy < 1 \). ### Step 3: Check the condition Calculate \( ab \): \[ ab = \left(\frac{1}{3}\right) \left(\frac{1}{2}\right) = \frac{1}{6} < 1 \] Since \( ab < 1 \), we can apply the formula. ### Step 4: Apply the formula Now we can substitute \( x = \frac{1}{3} \) and \( y = \frac{1}{2} \): \[ \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{\frac{1}{3} + \frac{1}{2}}{1 - \frac{1}{6}}\right) \] ### Step 5: Simplify the expression Calculate the numerator: \[ \frac{1}{3} + \frac{1}{2} = \frac{2 + 3}{6} = \frac{5}{6} \] Calculate the denominator: \[ 1 - \frac{1}{6} = \frac{6 - 1}{6} = \frac{5}{6} \] Thus, we have: \[ \tan^{-1}\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right) = \tan^{-1}(1) \] ### Step 6: Find the cosine Now we know: \[ \tan^{-1}(1) = \frac{\pi}{4} \] So we need to find: \[ \cos\left(\tan^{-1}(1)\right) = \cos\left(\frac{\pi}{4}\right) \] ### Step 7: Calculate the cosine We know: \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] ### Final Answer Thus, the final answer is: \[ \cos\left(\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right)\right) = \frac{1}{\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

2tan^(-1)((1)/(3))+tan^(-1)((1)/(2))=

tan(tan^(-1)((1)/(2))-tan^(-1)((1)/(3)))=

tan(cos^(-1)((3)/(5))+tan^(-1)((1)/(4)))

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

Show that: cos(2tan^(-1)((1)/(7)))=sin(4tan^(-1)((1)/(3)))

tan(cos^(-1)((4)/(5))+tan^(-1)((2)/(3)))=

Prove that 3tan^(-1)((1)/(2+sqrt(3)))-tan^(-1)((1)/(2))=tan^(-1)((1)/(3))

tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)|0tan(1)+tan(1)

Solve: tan^(-1)((1)/(2))+tan^(-1)((1)/(3))+tan^(-1)((3)/(5))+tan^(-1)((1)/(7))

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)