Home
Class 12
MATHS
tan^(-1)1+tan^(-1)2+tan^(-1)3=...

`tan^(-1)1+tan^(-1)2+tan^(-1)3=`

A

`0`

B

`pi`

C

`(pi)/(4)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) \), we can use the formula for the sum of inverse tangents. The formula states: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \quad \text{if } ab < 1 \] \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) + \pi \quad \text{if } ab > 1 \] ### Step 1: Calculate \( \tan^{-1}(1) + \tan^{-1}(2) \) Let \( a = 1 \) and \( b = 2 \): - Calculate \( ab = 1 \cdot 2 = 2 \) which is greater than 1. Thus, we will use the second case of the formula: \[ \tan^{-1}(1) + \tan^{-1}(2) = \tan^{-1}\left(\frac{1 + 2}{1 - 1 \cdot 2}\right) + \pi \] Calculating the values: \[ \tan^{-1}(1) + \tan^{-1}(2) = \tan^{-1}\left(\frac{3}{1 - 2}\right) + \pi = \tan^{-1}\left(\frac{3}{-1}\right) + \pi = \tan^{-1}(-3) + \pi \] Using the property \( \tan^{-1}(-x) = -\tan^{-1}(x) \): \[ \tan^{-1}(1) + \tan^{-1}(2) = -\tan^{-1}(3) + \pi \] ### Step 2: Add \( \tan^{-1}(3) \) Now, we need to add \( \tan^{-1}(3) \): \[ \tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = (-\tan^{-1}(3) + \pi) + \tan^{-1}(3) \] The \( -\tan^{-1}(3) \) and \( \tan^{-1}(3) \) cancel each other out: \[ \tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi \] ### Final Answer Thus, the final result is: \[ \tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)3+ tan^(-1)x = tan^(-1)8 , then: x=

Prove that 2(tan^(-1)1/4+tan^(-1)2/9)=tan^(-1)4/3 .

Pove that i) tan^(-1)1/2+tan^(-1)2/11=tan^(-1)3/4 ii) tan^(-1)2/11+tan^(-1)7/24=tan^(-1)1/2 iii) tan^(-1)1+tan^(-1)1/2+tan^(-1)1/3=pi/2 iv) 2tan^(-1)1/3+tan^(-1)/17=pi/4 v) tan^(-1)2-tan^(-1)1=tan^(-1)1/3 vi) tan^(-1)+tan^(-1)2+tan^(-1)3=pi vii) tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4 viii) tan^(-1)1/4+tan^(-1)2/9=1/2tan^(-1)4/3

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)

tan^(-1)1+tan^(-1)1/3=?

If tan^(-1) 3 +tan^(-1)x=tan^(-1)8 then x =