Home
Class 12
MATHS
tan^(-1)((3)/(4))+tan^(-1)((3)/(5))-tan^...

`tan^(-1)((3)/(4))+tan^(-1)((3)/(5))-tan^(-1)((8)/(19))=`

A

`(pi)/(6)`

B

`(pi)/(4)`

C

`(pi)/(3)`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right) - \tan^{-1}\left(\frac{8}{19}\right) \), we will use the properties of inverse tangent functions. ### Step 1: Combine the first two terms using the formula for the sum of inverse tangents The formula for the sum of two inverse tangents is: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \quad \text{if } ab < 1 \] Let \( a = \frac{3}{4} \) and \( b = \frac{3}{5} \). First, we calculate \( ab \): \[ ab = \left(\frac{3}{4}\right) \left(\frac{3}{5}\right) = \frac{9}{20} < 1 \] Now we can apply the formula: \[ \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{\frac{3}{4} + \frac{3}{5}}{1 - \frac{3}{4} \cdot \frac{3}{5}}\right) \] ### Step 2: Calculate the numerator and denominator **Numerator:** \[ \frac{3}{4} + \frac{3}{5} = \frac{15}{20} + \frac{12}{20} = \frac{27}{20} \] **Denominator:** \[ 1 - \frac{9}{20} = \frac{20}{20} - \frac{9}{20} = \frac{11}{20} \] ### Step 3: Substitute back into the formula Now substituting the values back: \[ \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{\frac{27}{20}}{\frac{11}{20}}\right) = \tan^{-1}\left(\frac{27}{11}\right) \] ### Step 4: Now subtract the third term We need to calculate: \[ \tan^{-1}\left(\frac{27}{11}\right) - \tan^{-1}\left(\frac{8}{19}\right) \] Using the formula for the difference of two inverse tangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \quad \text{if } ab > -1 \] Let \( a = \frac{27}{11} \) and \( b = \frac{8}{19} \). ### Step 5: Calculate \( ab \) \[ ab = \left(\frac{27}{11}\right) \left(\frac{8}{19}\right) = \frac{216}{209} > -1 \] Now we can apply the difference formula: \[ \tan^{-1}\left(\frac{27}{11}\right) - \tan^{-1}\left(\frac{8}{19}\right) = \tan^{-1}\left(\frac{\frac{27}{11} - \frac{8}{19}}{1 + \frac{27}{11} \cdot \frac{8}{19}}\right) \] ### Step 6: Calculate the numerator and denominator for the difference **Numerator:** \[ \frac{27}{11} - \frac{8}{19} = \frac{27 \cdot 19 - 8 \cdot 11}{11 \cdot 19} = \frac{513 - 88}{209} = \frac{425}{209} \] **Denominator:** \[ 1 + \frac{216}{209} = \frac{209 + 216}{209} = \frac{425}{209} \] ### Step 7: Substitute back into the formula Now substituting back: \[ \tan^{-1}\left(\frac{27}{11}\right) - \tan^{-1}\left(\frac{8}{19}\right) = \tan^{-1}\left(\frac{\frac{425}{209}}{\frac{425}{209}}\right) = \tan^{-1}(1) \] ### Step 8: Final answer Since \( \tan^{-1}(1) = \frac{\pi}{4} \), we conclude: \[ \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right) - \tan^{-1}\left(\frac{8}{19}\right) = \frac{\pi}{4} \] ### Final Answer: \[ \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((4)/(7))-tan^(-1)((1)/(5))=tan^(-1)((1)/(3))

The value of tan^(-1)((1)/(3))+tan^(-1)((2)/(9))+tan^(-1)((4)/(33))+tan^(-1)((8)/(129))+...n terms is:

For n in N ,if tan^(-1)((1)/(3))+tan^(-1)((1)/(4))+tan^(-1)((1)/(5))+tan^(-1)((1)/(n))=(pi)/(4) ,then (n-2)/(15) is equal to

the value of 3tan^(-1)((1)/(4))+tan^(-1)((1)/(20))+tan^(-1)((1)/(1985))

Prove that : tan^(-1)((1)/(2))+tan^(-1)((1)/(5))+tan^(-1)((1)/(8))=(pi)/(4)

2tan^(-1)((1)/(5))+tan^(-1)((1)/(8))= tan^(-1)((4)/(7))

Solve: tan^(-1)((1)/(2))+tan^(-1)((1)/(3))+tan^(-1)((3)/(5))+tan^(-1)((1)/(7))

2tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+2tan^(-1)((1)/(8))=

tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=

Prove that: tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=(pi)/(4)