Home
Class 12
MATHS
Prove that sin^(-1)(-(1)/(2))+cos^(-1)(-...

Prove that `sin^(-1)(-(1)/(2))+cos^(-1)(-(sqrt(3))/(2))=cos^(-1)(-(1)/(2))`.

A

`cos^(-1)((-1)/(2))`

B

`cos^(-1)((1)/(2))`

C

`cos^(-1)((-sqrt(3))/(2))`

D

`cos^(-1)((sqrt(3))/(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((sqrt(3))/(2))

sin^(-1)(1/2)+cos^(-1)(-sqrt3/2)=?

(a) sin^(-1)(-1/2)=? (b) cos^(-1)(sqrt3/2)=?

sin^(-1)(1/2)+cos^(-1)(1/sqrt2)=?

For the principal values,evaluate each of the following: sin^(-1)(-(1)/(2))+2cos^(-1)(-(sqrt(3))/(2))( ii) sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((sqrt(3))/(2))

sin[cos^(-1)(-1/2)+tan^(-1)(sqrt(3))]

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that cos^(-1) (sqrt(1/3))-cos^(-1) (sqrt((1)/(6)))+cos^(-1) ((sqrt(10)-1)/(3sqrt2))=cos^(-1) (2/3)