Home
Class 12
MATHS
cos^(-1)((12)/(13))+sin^(-1)((3)/(5))=...

`cos^(-1)((12)/(13))+sin^(-1)((3)/(5))`=

A

`sin^(-1)((56)/(65))`

B

`sin^(-1)((16)/(65))`

C

`sin^(-1)((20)/(65))`

D

`sin^(-1)((36)/(65))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) \), we can follow these steps: ### Step 1: Let \( \alpha = \cos^{-1}\left(\frac{12}{13}\right) \) This means that \( \cos \alpha = \frac{12}{13} \). ### Step 2: Find \( \sin \alpha \) We can use the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Substituting \( \cos \alpha \): \[ \sin^2 \alpha + \left(\frac{12}{13}\right)^2 = 1 \] Calculating \( \left(\frac{12}{13}\right)^2 \): \[ \sin^2 \alpha + \frac{144}{169} = 1 \] \[ \sin^2 \alpha = 1 - \frac{144}{169} = \frac{169 - 144}{169} = \frac{25}{169} \] Taking the square root: \[ \sin \alpha = \frac{5}{13} \] ### Step 3: Rewrite the expression Now we can rewrite the original expression: \[ \cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \alpha + \sin^{-1}\left(\frac{3}{5}\right) \] ### Step 4: Let \( \beta = \sin^{-1}\left(\frac{3}{5}\right) \) This means that \( \sin \beta = \frac{3}{5} \). ### Step 5: Find \( \cos \beta \) Using the Pythagorean identity again: \[ \sin^2 \beta + \cos^2 \beta = 1 \] Substituting \( \sin \beta \): \[ \left(\frac{3}{5}\right)^2 + \cos^2 \beta = 1 \] Calculating \( \left(\frac{3}{5}\right)^2 \): \[ \frac{9}{25} + \cos^2 \beta = 1 \] \[ \cos^2 \beta = 1 - \frac{9}{25} = \frac{25 - 9}{25} = \frac{16}{25} \] Taking the square root: \[ \cos \beta = \frac{4}{5} \] ### Step 6: Use the sine addition formula Now, we can use the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Substituting the values: \[ \sin(\alpha + \beta) = \left(\frac{5}{13}\right) \left(\frac{4}{5}\right) + \left(\frac{12}{13}\right) \left(\frac{3}{5}\right) \] Calculating: \[ = \frac{20}{65} + \frac{36}{65} = \frac{56}{65} \] ### Step 7: Final result Thus, we have: \[ \sin(\alpha + \beta) = \frac{56}{65} \] So, \[ \cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{56}{65}\right) \] ### Conclusion The final answer is: \[ \cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{56}{65}\right) \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

Prove that cos^(-1)((3)/(5))+cos^(-1)((12)/(13))+cos^(-1)((63)/(65))=(pi)/(2)

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((12)/(5))

sin^(-1)((12)/(13))-sin^(-1)((3)/(5)) is equal to

The value of sin^(-1)((12)/(13)) - sin ^(-1)((3)/(5)) is equal to (A) pi-sin ^(-1) ((63)/(65)) (B) (pi)/(2) - sin ^(-1)((56)/(65)) (C) (pi)/(2) - cos ^(-1)((9)/(65)) (D) pi - cos ^(-1)((3)/(65))

sin^(-1)((5)/(13))+cos^(-1)((3)/(5))=

tan^(-1)((5)/(13))+cos^(-1)((3)/(5))=

Prove that 2sin^(-1)((3)/(5))-cos^(-1)((5)/(13))=cos^(-1)((323)/(325))

Let alpha=2tan^(-1)((1)/(2))+(sin^(-1)3)/(5) and beta=sin^(-1)((12)/(13))+cos^(-1)((4)/(5))+cos^(-1)((16)/(63)) be such that2sin alpha and cos beta are roots of the equation x^(2)-px+q=0, then (p-q) is

The value of tan^(-1)(1)+cos^(-1)(-(1)/(2))+sin^(-1)(-(1)/(2)) is equal to (pi)/(4)b*(5 pi)/(12)c*(3 pi)/(4)d.(13 pi)/(12)