Home
Class 12
MATHS
cos^(-1)((4)/(5))+cos^(-1)((12)/(13))=...

`cos^(-1)((4)/(5))+cos^(-1)((12)/(13))`=

A

`cos^(-1)((48)/(65))`

B

`cos^(-1)((33)/(65))`

C

`cos^(-1)((11)/(65))`

D

`pi-cos^(-1)((8)/(65))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) \), we can use the formula for the sum of two inverse cosines: \[ \cos^{-1}(x) + \cos^{-1}(y) = \cos^{-1}(xy - \sqrt{(1-x^2)(1-y^2)}) \] ### Step 1: Identify \( x \) and \( y \) Let: - \( x = \frac{4}{5} \) - \( y = \frac{12}{13} \) ### Step 2: Calculate \( xy \) Now, calculate \( xy \): \[ xy = \frac{4}{5} \cdot \frac{12}{13} = \frac{48}{65} \] ### Step 3: Calculate \( 1 - x^2 \) and \( 1 - y^2 \) Next, we need to find \( 1 - x^2 \) and \( 1 - y^2 \): \[ 1 - x^2 = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25} \] \[ 1 - y^2 = 1 - \left(\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169} \] ### Step 4: Calculate \( \sqrt{(1-x^2)(1-y^2)} \) Now, compute \( \sqrt{(1-x^2)(1-y^2)} \): \[ \sqrt{(1-x^2)(1-y^2)} = \sqrt{\frac{9}{25} \cdot \frac{25}{169}} = \sqrt{\frac{225}{4225}} = \frac{15}{65} \] ### Step 5: Substitute into the formula Now substitute \( xy \) and \( \sqrt{(1-x^2)(1-y^2)} \) back into the formula: \[ \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{48}{65} - \frac{15}{65}\right) \] \[ = \cos^{-1}\left(\frac{48 - 15}{65}\right) = \cos^{-1}\left(\frac{33}{65}\right) \] ### Final Answer Thus, we have: \[ \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right) \] ### Conclusion The final answer is \( \cos^{-1}\left(\frac{33}{65}\right) \). ---
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)((3)/(5))+cos^(-1)((12)/(13))+cos^(-1)((63)/(65))=(pi)/(2)

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

Let alpha=2tan^(-1)((1)/(2))+(sin^(-1)3)/(5) and beta=sin^(-1)((12)/(13))+cos^(-1)((4)/(5))+cos^(-1)((16)/(63)) be such that2sin alpha and cos beta are roots of the equation x^(2)-px+q=0, then (p-q) is

cos^(-1)((3)/(5))+cos^(-1)((4)/(5))=

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((12)/(5))

Prove that 2sin^(-1)((3)/(5))-cos^(-1)((5)/(13))=cos^(-1)((323)/(325))

cos^(-1)((3)/(5))+cos^(-1)((4)/(5))=(pi)/(2)

sin^(-1)((5)/(13))+cos^(-1)((3)/(5))=

tan(sin^(-1)((3)/(5))+cos^(-1)((3)/(sqrt(13)))=

solve sin{cos^(-1)(-(3)/(5))+cot^(-1)(-(5)/(12))}