Home
Class 12
MATHS
sin^(-1)((8)/(17))+sin^(-1)((3)/(5))=...

`sin^(-1)((8)/(17))+sin^(-1)((3)/(5))=`

A

`tan^(-1)((77)/(36))`

B

`tan^(-1)((77)/(85))`

C

`pi+tan^(-1)((77)/(36))`

D

`pi-tan^(-1)((77)/(36))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) \), we will use the formula for the sum of inverse sine functions. ### Step-by-Step Solution: 1. **Identify the values**: Let \( x = \frac{8}{17} \) and \( y = \frac{3}{5} \). 2. **Check the domain**: Both \( x \) and \( y \) are in the range \([-1, 1]\), so we can apply the formula. 3. **Use the formula**: The formula for \( \sin^{-1}(x) + \sin^{-1}(y) \) is given by: \[ \sin^{-1}(x) + \sin^{-1}(y) = \sin^{-1\left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2}\right)} \] 4. **Calculate \( \sqrt{1 - y^2} \)**: \[ \sqrt{1 - y^2} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \] 5. **Calculate \( \sqrt{1 - x^2} \)**: \[ \sqrt{1 - x^2} = \sqrt{1 - \left(\frac{8}{17}\right)^2} = \sqrt{1 - \frac{64}{289}} = \sqrt{\frac{225}{289}} = \frac{15}{17} \] 6. **Substitute into the formula**: \[ \sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1\left(\frac{8}{17} \cdot \frac{4}{5} + \frac{3}{5} \cdot \frac{15}{17}\right)} \] 7. **Calculate the expression**: \[ \frac{8}{17} \cdot \frac{4}{5} = \frac{32}{85} \] \[ \frac{3}{5} \cdot \frac{15}{17} = \frac{45}{85} \] \[ \frac{32}{85} + \frac{45}{85} = \frac{77}{85} \] 8. **Final result**: \[ \sin^{-1}\left(\frac{77}{85}\right) \] 9. **Convert to tangent**: To express this in terms of tangent, we can use the relationship: \[ \tan(y) = \frac{\text{opposite}}{\text{adjacent}} = \frac{77}{36} \] where the adjacent side can be calculated as \( \sqrt{85^2 - 77^2} = 36 \). 10. **Conclusion**: Therefore, we have: \[ \sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{77}{36}\right) \] ### Final Answer: \[ \sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{77}{36}\right) \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

Prove each of the following sin^(-1)((3)/(5))+sin^(-1)((8)/(17))=sin^(-1)((77)/(85))

Prove each of the following sin^(-1)((3)/(5))+sin^(-1)((8)/(17))=sin^(-1)((77)/(85))

sin^(-1)((12)/(13))-sin^(-1)((3)/(5)) is equal to

Show that sin^(-1)((3)/(5))-sin^(-1)((8)/(17))=cos^(-1)((84)/(85))

If A=9tan^(-1)(sqrt(2)-1) and B=3sin^(-1)((1)/(3))+sin^(-1)((3)/(5)) then

What is sin [sin^(-1)((3)/(5))+sin^(-1)((4)/(5))] equal to ?

What is "sin"^(-1)(3)/(5)- "sin"^(-1)(4)/(5) equal to ?

Solve the following equations: sin^(-1)(3x)/(5)+sin^(-1)(4x)/(5)=sin^(-1)xsin^(-1)6x+sin^(-1)6sqrt(3)x=(pi)/(2)