Home
Class 12
MATHS
sin^(-1)((5)/(13))+cos^(-1)((3)/(5))=...

`sin^(-1)((5)/(13))+cos^(-1)((3)/(5))=`

A

`tan^(-1)((5)/(12))`

B

`tan^(-1)((63)/(16))`

C

`tan^(-1)((4)/(3))`

D

`tan^(-1)((9)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) \), we can follow these steps: ### Step 1: Let \( y = \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) \) This is our starting point where we define \( y \) as the sum of the two inverse trigonometric functions. **Hint:** Define the sum as a variable to simplify the expression. ### Step 2: Let \( \alpha = \sin^{-1}\left(\frac{5}{13}\right) \) and \( \beta = \cos^{-1}\left(\frac{3}{5}\right) \) Now, we can express \( y \) in terms of \( \alpha \) and \( \beta \): \[ y = \alpha + \beta \] **Hint:** Breaking down the components helps in visualizing the problem. ### Step 3: Find the values of \( \sin \alpha \) and \( \cos \beta \) From the definitions: - \( \sin \alpha = \frac{5}{13} \) - \( \cos \beta = \frac{3}{5} \) **Hint:** Recall the definitions of sine and cosine for the angles. ### Step 4: Determine \( \cos \alpha \) and \( \sin \beta \) Using the Pythagorean identity, we can find: - For \( \alpha \): \[ \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13} \] - For \( \beta \): \[ \sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \] **Hint:** Use the Pythagorean theorem to find the missing sine or cosine values. ### Step 5: Use the tangent addition formula Now, we can find \( \tan \alpha \) and \( \tan \beta \): - \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} \) - \( \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \) **Hint:** The tangent of an angle can be found by dividing sine by cosine. ### Step 6: Apply the tangent addition formula Using the formula \( \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \): \[ \tan(y) = \frac{\frac{5}{12} + \frac{4}{3}}{1 - \left(\frac{5}{12} \cdot \frac{4}{3}\right)} \] ### Step 7: Simplify the expression First, find a common denominator for the numerator: \[ \frac{5}{12} + \frac{4}{3} = \frac{5}{12} + \frac{16}{12} = \frac{21}{12} \] Now, calculate the denominator: \[ 1 - \left(\frac{5 \cdot 4}{12 \cdot 3}\right) = 1 - \frac{20}{36} = 1 - \frac{5}{9} = \frac{4}{9} \] Now substituting back: \[ \tan(y) = \frac{\frac{21}{12}}{\frac{4}{9}} = \frac{21 \cdot 9}{12 \cdot 4} = \frac{189}{48} = \frac{63}{16} \] ### Step 8: Conclusion Thus, we have: \[ y = \tan^{-1}\left(\frac{63}{16}\right) \] **Final Answer:** \[ \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{63}{16}\right) \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((5)/(13))+cos^(-1)((3)/(5))=

Prove that: sin^(-1)((5)/(13))+cos^(-1)((4)/(5))=(1)/(2)sin^(-1)((3696)/(4225))

Prove that 2sin^(-1)((3)/(5))-cos^(-1)((5)/(13))=cos^(-1)((323)/(325))

Let alpha=2tan^(-1)((1)/(2))+(sin^(-1)3)/(5) and beta=sin^(-1)((12)/(13))+cos^(-1)((4)/(5))+cos^(-1)((16)/(63)) be such that2sin alpha and cos beta are roots of the equation x^(2)-px+q=0, then (p-q) is

Prove that: sin^(-1)((4)/(5))+sin^(-1)((5)/(13))+sin^(-1)((16)/(65))=(pi)/(2)

Prove that cos^(-1)((3)/(5))+cos^(-1)((12)/(13))+cos^(-1)((63)/(65))=(pi)/(2)

Prove the following results: tan((sin^(-1)(15))/(13)+(cos^(-1)3)/(5))=(63)/(16) (ii) sin((cos^(-1)3)/(5)+(sin^(-1)5)/(13))=(63)/(65)

sin^(-1)((12)/(13))-sin^(-1)((3)/(5)) is equal to

The value of 169e^(i)(pi+sin^(-1)((12)/(13))+cos^(-1)((5)/(13))) is

cos^(-1)((12)/(13))+sin^(-1)((3)/(5)) =