Home
Class 12
MATHS
tan(sin^(-1)((3)/(5))+cos^(-1)((3)/(sqrt...

`tan(sin^(-1)((3)/(5))+cos^(-1)((3)/(sqrt(13)))=`

A

`(sqrt(13))/(5)`

B

`(5)/(sqrt(13))`

C

`(17)/(6)`

D

`(17)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan(\sin^{-1}(\frac{3}{5}) + \cos^{-1}(\frac{3}{\sqrt{13}})) \), we will follow these steps: ### Step 1: Define the angles Let: - \( \alpha = \sin^{-1}(\frac{3}{5}) \) - \( \beta = \cos^{-1}(\frac{3}{\sqrt{13}}) \) ### Step 2: Find \( \tan(\alpha) \) and \( \tan(\beta) \) From the definition of sine and cosine: - For \( \alpha \): \[ \sin(\alpha) = \frac{3}{5} \implies \text{Opposite} = 3, \text{Hypotenuse} = 5 \] Using Pythagorean theorem: \[ \text{Adjacent} = \sqrt{5^2 - 3^2} = \sqrt{25 - 9} = \sqrt{16} = 4 \] Therefore: \[ \tan(\alpha) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{3}{4} \] - For \( \beta \): \[ \cos(\beta) = \frac{3}{\sqrt{13}} \implies \text{Adjacent} = 3, \text{Hypotenuse} = \sqrt{13} \] Using Pythagorean theorem: \[ \text{Opposite} = \sqrt{(\sqrt{13})^2 - 3^2} = \sqrt{13 - 9} = \sqrt{4} = 2 \] Therefore: \[ \tan(\beta) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{2}{3} \] ### Step 3: Use the tangent addition formula We can now use the tangent addition formula: \[ \tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha) \tan(\beta)} \] Substituting the values: \[ \tan(\alpha + \beta) = \frac{\frac{3}{4} + \frac{2}{3}}{1 - \left(\frac{3}{4} \cdot \frac{2}{3}\right)} \] ### Step 4: Simplify the numerator Finding a common denominator for the numerator: \[ \tan(\alpha + \beta) = \frac{\frac{3 \cdot 3}{12} + \frac{2 \cdot 4}{12}}{1 - \frac{6}{12}} = \frac{\frac{9 + 8}{12}}{1 - \frac{1}{2}} = \frac{\frac{17}{12}}{\frac{1}{2}} = \frac{17}{12} \cdot 2 = \frac{17}{6} \] ### Final Result Thus, we have: \[ \tan(\sin^{-1}(\frac{3}{5}) + \cos^{-1}(\frac{3}{\sqrt{13}})) = \frac{17}{6} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin^(-1)((3)/(5))+cos^(-1)((5)/(sqrt(26)))=tan^(-1)((19)/(17))

tan^(-1)((5)/(13))+cos^(-1)((3)/(5))=

sin^(-1)((5)/(13))+cos^(-1)((3)/(5))=

Value of 3tan^(-1)((1)/(3))+tan^(-1)((1)/(2))+sin^(-1)((1)/(sqrt(5)))+cos^(-1)((2)/(sqrt(5))) is greater than

sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))

Prove that 2sin^(-1)((3)/(5))-cos^(-1)((5)/(13))=cos^(-1)((323)/(325))

Prove the following results: tan((cos^(-1)4)/(5)+(tan^(-1)2)/(3))=(17)/(6)(ii)cos((sin^(-1)3)/(5)+(cot^(-1)3)/(2))=(6)/(5sqrt(13))

sin^(-1)((sqrt(3))/(2))-tan^(-1)(-sqrt(3))

Find the value of sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((1)/(2))+tan^(-1)(-(1)/(sqrt(3)))

a=sin^(-1)(-(sqrt(2))/(2))+cos^(-1)(-(1)/(2)) and b=tan^(-1)(-sqrt(3))-cot^(-1)(-(1)/(sqrt(3))) ,then