Home
Class 12
MATHS
tan(cos^(-1)((4)/(5))+tan^(-1)((2)/(3)))...

`tan(cos^(-1)((4)/(5))+tan^(-1)((2)/(3)))=`

A

`(17)/(24)`

B

`(24)/(17)`

C

`(17)/(6)`

D

`(6)/(17)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan(\cos^{-1}(\frac{4}{5}) + \tan^{-1}(\frac{2}{3})) \), we will follow these steps: ### Step 1: Let \( \alpha = \cos^{-1}(\frac{4}{5}) \) and \( \beta = \tan^{-1}(\frac{2}{3}) \) We start by defining \( \alpha \) and \( \beta \) for clarity. ### Step 2: Find \( \tan(\alpha) \) Using the definition of cosine, we know: \[ \cos(\alpha) = \frac{4}{5} \] To find \( \tan(\alpha) \), we need to find the opposite side of the triangle. We can use the Pythagorean theorem: \[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \] Let \( \sin(\alpha) = y \). Then: \[ y^2 + \left(\frac{4}{5}\right)^2 = 1 \] Calculating \( \left(\frac{4}{5}\right)^2 \): \[ y^2 + \frac{16}{25} = 1 \implies y^2 = 1 - \frac{16}{25} = \frac{9}{25} \implies y = \frac{3}{5} \] Thus, \[ \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] ### Step 3: Find \( \tan(\beta) \) From the definition of tangent, we have: \[ \tan(\beta) = \frac{2}{3} \] ### Step 4: Use the tangent addition formula Now, we can use the tangent addition formula: \[ \tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha) \tan(\beta)} \] Substituting the values we found: \[ \tan(\alpha + \beta) = \frac{\frac{3}{4} + \frac{2}{3}}{1 - \left(\frac{3}{4} \cdot \frac{2}{3}\right)} \] ### Step 5: Simplify the numerator To add \( \frac{3}{4} \) and \( \frac{2}{3} \), we need a common denominator: \[ \text{Common denominator} = 12 \] Thus, \[ \frac{3}{4} = \frac{9}{12}, \quad \frac{2}{3} = \frac{8}{12} \] So, \[ \tan(\alpha + \beta) = \frac{\frac{9}{12} + \frac{8}{12}}{1 - \frac{6}{12}} = \frac{\frac{17}{12}}{\frac{1}{2}} = \frac{17}{12} \cdot 2 = \frac{17}{6} \] ### Final Answer Thus, \[ \tan(\cos^{-1}(\frac{4}{5}) + \tan^{-1}(\frac{2}{3})) = \frac{17}{6} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|150 Videos
  • VECTOR

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|301 Videos

Similar Questions

Explore conceptually related problems

tan(cos^(-1)((3)/(5))+tan^(-1)((1)/(4)))

The value of tan[ cos^(-1) ((4)/(5)) + tan^(-1) ((2)/(5)) ] will be

Prove that cos^(-1)((4)/(5))=tan^(-1)((3)/(4))

cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

Prove that: sin^(-1)(-(4)/(5))=tan^(-1)(-(4)/(3))=co^(-1)(-(3)/(5))-pi

tan^(-1)((4)/(7))-tan^(-1)((1)/(5))=tan^(-1)((1)/(3))

tan^(-1)((3)/(4))+tan^(-1)((3)/(5))-tan^(-1)((8)/(19))=

Prove the following: tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=(1)/(2)cos^(-1)((3)/(5))

Prove that: tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=(1)/(2)cos^(-1)((3)/(5))

Show that: cos(2tan^(-1)((1)/(7)))=sin(4tan^(-1)((1)/(3)))